mxHierarchicalLayout.js 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * Copyright (c) 2006-2018, JGraph Ltd
 * Copyright (c) 2006-2018, Gaudenz Alder
 */
/**
 * Class: mxHierarchicalLayout
 * 
 * A hierarchical layout algorithm.
 * 
 * Constructor: mxHierarchicalLayout
 *
 * Constructs a new hierarchical layout algorithm.
 *
 * Arguments:
 * 
 * graph - Reference to the enclosing <mxGraph>.
 * orientation - Optional constant that defines the orientation of this
 * layout.
 * deterministic - Optional boolean that specifies if this layout should be
 * deterministic. Default is true.
 */
function mxHierarchicalLayout(graph, orientation, deterministic)
{
	mxGraphLayout.call(this, graph);
	this.orientation = (orientation != null) ? orientation : mxConstants.DIRECTION_NORTH;
	this.deterministic = (deterministic != null) ? deterministic : true;
};

var mxHierarchicalEdgeStyle =
{
	ORTHOGONAL: 1,
	POLYLINE: 2,
	STRAIGHT: 3,
	CURVE: 4
};

/**
 * Extends mxGraphLayout.
 */
mxHierarchicalLayout.prototype = new mxGraphLayout();
mxHierarchicalLayout.prototype.constructor = mxHierarchicalLayout;

/**
 * Variable: roots
 * 
 * Holds the array of <mxCell> that this layout contains.
 */
mxHierarchicalLayout.prototype.roots = null;

/**
 * Variable: resizeParent
 * 
 * Specifies if the parent should be resized after the layout so that it
 * contains all the child cells. Default is false. See also <parentBorder>.
 */
mxHierarchicalLayout.prototype.resizeParent = false;

/**
 * Variable: maintainParentLocation
 * 
 * Specifies if the parent location should be maintained, so that the
 * top, left corner stays the same before and after execution of
 * the layout. Default is false for backwards compatibility.
 */
mxHierarchicalLayout.prototype.maintainParentLocation = false;

/**
 * Variable: moveParent
 * 
 * Specifies if the parent should be moved if <resizeParent> is enabled.
 * Default is false.
 */
mxHierarchicalLayout.prototype.moveParent = false;

/**
 * Variable: parentBorder
 * 
 * The border to be added around the children if the parent is to be
 * resized using <resizeParent>. Default is 0.
 */
mxHierarchicalLayout.prototype.parentBorder = 0;

/**
 * Variable: intraCellSpacing
 * 
 * The spacing buffer added between cells on the same layer. Default is 30.
 */
mxHierarchicalLayout.prototype.intraCellSpacing = 30;

/**
 * Variable: interRankCellSpacing
 * 
 * The spacing buffer added between cell on adjacent layers. Default is 50.
 */
mxHierarchicalLayout.prototype.interRankCellSpacing = 100;

/**
 * Variable: interHierarchySpacing
 * 
 * The spacing buffer between unconnected hierarchies. Default is 60.
 */
mxHierarchicalLayout.prototype.interHierarchySpacing = 60;

/**
 * Variable: parallelEdgeSpacing
 * 
 * The distance between each parallel edge on each ranks for long edges
 */
mxHierarchicalLayout.prototype.parallelEdgeSpacing = 10;

/**
 * Variable: orientation
 * 
 * The position of the root node(s) relative to the laid out graph in.
 * Default is <mxConstants.DIRECTION_NORTH>.
 */
mxHierarchicalLayout.prototype.orientation = mxConstants.DIRECTION_NORTH;

/**
 * Variable: fineTuning
 * 
 * Whether or not to perform local optimisations and iterate multiple times
 * through the algorithm. Default is true.
 */
mxHierarchicalLayout.prototype.fineTuning = true;

/**
 * 
 * Variable: tightenToSource
 * 
 * Whether or not to tighten the assigned ranks of vertices up towards
 * the source cells.
 */
mxHierarchicalLayout.prototype.tightenToSource = true;

/**
 * Variable: disableEdgeStyle
 * 
 * Specifies if the STYLE_NOEDGESTYLE flag should be set on edges that are
 * modified by the result. Default is true.
 */
mxHierarchicalLayout.prototype.disableEdgeStyle = true;

/**
 * Variable: traverseAncestors
 * 
 * Whether or not to drill into child cells and layout in reverse
 * group order. This also cause the layout to navigate edges whose 
 * terminal vertices have different parents but are in the same 
 * ancestry chain
 */
mxHierarchicalLayout.prototype.traverseAncestors = true;

/**
 * Variable: model
 * 
 * The internal <mxGraphHierarchyModel> formed of the layout.
 */
mxHierarchicalLayout.prototype.model = null;

/**
 * Variable: edgesSet
 * 
 * A cache of edges whose source terminal is the key
 */
mxHierarchicalLayout.prototype.edgesCache = null;

/**
 * Variable: edgesSet
 * 
 * A cache of edges whose source terminal is the key
 */
mxHierarchicalLayout.prototype.edgeSourceTermCache = null;

/**
 * Variable: edgesSet
 * 
 * A cache of edges whose source terminal is the key
 */
mxHierarchicalLayout.prototype.edgesTargetTermCache = null;

/**
 * Variable: edgeStyle
 * 
 * The style to apply between cell layers to edge segments
 */
mxHierarchicalLayout.prototype.edgeStyle = mxHierarchicalEdgeStyle.POLYLINE;

/**
 * Function: getModel
 * 
 * Returns the internal <mxGraphHierarchyModel> for this layout algorithm.
 */
mxHierarchicalLayout.prototype.getModel = function()
{
	return this.model;
};

/**
 * Function: execute
 * 
 * Executes the layout for the children of the specified parent.
 * 
 * Parameters:
 * 
 * parent - Parent <mxCell> that contains the children to be laid out.
 * roots - Optional starting roots of the layout.
 */
mxHierarchicalLayout.prototype.execute = function(parent, roots)
{
	this.parent = parent;
	var model = this.graph.model;
	this.edgesCache = new mxDictionary();
	this.edgeSourceTermCache = new mxDictionary();
	this.edgesTargetTermCache = new mxDictionary();

	if (roots != null && !(roots instanceof Array))
	{
		roots = [roots];
	}
	
	// If the roots are set and the parent is set, only
	// use the roots that are some dependent of the that
	// parent.
	// If just the root are set, use them as-is
	// If just the parent is set use it's immediate
	// children as the initial set

	if (roots == null && parent == null)
	{
		// TODO indicate the problem
		return;
	}
	
	//  Maintaining parent location
	this.parentX = null;
	this.parentY = null;
	
	if (parent != this.root && model.isVertex(parent) != null && this.maintainParentLocation)
	{
		var geo = this.graph.getCellGeometry(parent);
		
		if (geo != null)
		{
			this.parentX = geo.x;
			this.parentY = geo.y;
		}
	}
	
	if (roots != null)
	{
		var rootsCopy = [];

		for (var i = 0; i < roots.length; i++)
		{
			var ancestor = parent != null ? model.isAncestor(parent, roots[i]) : true;
			
			if (ancestor && model.isVertex(roots[i]))
			{
				rootsCopy.push(roots[i]);
			}
		}

		this.roots = rootsCopy;
	}
	
	model.beginUpdate();
	try
	{
		this.run(parent);
		
		if (this.resizeParent && !this.graph.isCellCollapsed(parent))
		{
			this.graph.updateGroupBounds([parent], this.parentBorder, this.moveParent);
		}
		
		// Maintaining parent location
		if (this.parentX != null && this.parentY != null)
		{
			var geo = this.graph.getCellGeometry(parent);
			
			if (geo != null)
			{
				geo = geo.clone();
				geo.x = this.parentX;
				geo.y = this.parentY;
				model.setGeometry(parent, geo);
			}
		}
	}
	finally
	{
		model.endUpdate();
	}
};

/**
 * Function: findRoots
 * 
 * Returns all visible children in the given parent which do not have
 * incoming edges. If the result is empty then the children with the
 * maximum difference between incoming and outgoing edges are returned.
 * This takes into account edges that are being promoted to the given
 * root due to invisible children or collapsed cells.
 * 
 * Parameters:
 * 
 * parent - <mxCell> whose children should be checked.
 * vertices - array of vertices to limit search to
 */
mxHierarchicalLayout.prototype.findRoots = function(parent, vertices)
{
	var roots = [];
	
	if (parent != null && vertices != null)
	{
		var model = this.graph.model;
		var best = null;
		var maxDiff = -100000;
		
		for (var i in vertices)
		{
			var cell = vertices[i];

			if (model.isVertex(cell) && this.graph.isCellVisible(cell))
			{
				var conns = this.getEdges(cell);
				var fanOut = 0;
				var fanIn = 0;

				for (var k = 0; k < conns.length; k++)
				{
					var src = this.getVisibleTerminal(conns[k], true);

					if (src == cell)
					{
						fanOut++;
					}
					else
					{
						fanIn++;
					}
				}

				if (fanIn == 0 && fanOut > 0)
				{
					roots.push(cell);
				}

				var diff = fanOut - fanIn;

				if (diff > maxDiff)
				{
					maxDiff = diff;
					best = cell;
				}
			}
		}
		
		if (roots.length == 0 && best != null)
		{
			roots.push(best);
		}
	}
	
	return roots;
};

/**
 * Function: getEdges
 * 
 * Returns the connected edges for the given cell.
 * 
 * Parameters:
 * 
 * cell - <mxCell> whose edges should be returned.
 */
mxHierarchicalLayout.prototype.getEdges = function(cell)
{
	var cachedEdges = this.edgesCache.get(cell);
	
	if (cachedEdges != null)
	{
		return cachedEdges;
	}

	var model = this.graph.model;
	var edges = [];
	var isCollapsed = this.graph.isCellCollapsed(cell);
	var childCount = model.getChildCount(cell);

	for (var i = 0; i < childCount; i++)
	{
		var child = model.getChildAt(cell, i);

		if (this.isPort(child))
		{
			edges = edges.concat(model.getEdges(child, true, true));
		}
		else if (isCollapsed || !this.graph.isCellVisible(child))
		{
			edges = edges.concat(model.getEdges(child, true, true));
		}
	}

	edges = edges.concat(model.getEdges(cell, true, true));
	var result = [];
	
	for (var i = 0; i < edges.length; i++)
	{
		var source = this.getVisibleTerminal(edges[i], true);
		var target = this.getVisibleTerminal(edges[i], false);
		
		if ((source == target) ||
				((source != target) &&
						((target == cell && (this.parent == null || this.isAncestor(this.parent, source, this.traverseAncestors))) ||
						 	(source == cell && (this.parent == null || this.isAncestor(this.parent, target, this.traverseAncestors))))))
		{
			result.push(edges[i]);
		}
	}

	this.edgesCache.put(cell, result);

	return result;
};

/**
 * Function: getVisibleTerminal
 * 
 * Helper function to return visible terminal for edge allowing for ports
 * 
 * Parameters:
 * 
 * edge - <mxCell> whose edges should be returned.
 * source - Boolean that specifies whether the source or target terminal is to be returned
 */
mxHierarchicalLayout.prototype.getVisibleTerminal = function(edge, source)
{
	var terminalCache = this.edgesTargetTermCache;
	
	if (source)
	{
		terminalCache = this.edgeSourceTermCache;
	}

	var term = terminalCache.get(edge);

	if (term != null)
	{
		return term;
	}

	var state = this.graph.view.getState(edge);
	
	var terminal = (state != null) ? state.getVisibleTerminal(source) : this.graph.view.getVisibleTerminal(edge, source);
	
	if (terminal == null)
	{
		terminal = (state != null) ? state.getVisibleTerminal(source) : this.graph.view.getVisibleTerminal(edge, source);
	}

	if (terminal != null)
	{
		if (this.isPort(terminal))
		{
			terminal = this.graph.model.getParent(terminal);
		}
		
		terminalCache.put(edge, terminal);
	}

	return terminal;
};

/**
 * Function: run
 * 
 * The API method used to exercise the layout upon the graph description
 * and produce a separate description of the vertex position and edge
 * routing changes made. It runs each stage of the layout that has been
 * created.
 */
mxHierarchicalLayout.prototype.run = function(parent)
{
	// Separate out unconnected hierarchies
	var hierarchyVertices = [];
	var allVertexSet = [];

	if (this.roots == null && parent != null)
	{
		var filledVertexSet = Object();
		this.filterDescendants(parent, filledVertexSet);

		this.roots = [];
		var filledVertexSetEmpty = true;

		// Poor man's isSetEmpty
		for (var key in filledVertexSet)
		{
			if (filledVertexSet[key] != null)
			{
				filledVertexSetEmpty = false;
				break;
			}
		}

		while (!filledVertexSetEmpty)
		{
			var candidateRoots = this.findRoots(parent, filledVertexSet);
			
			// If the candidate root is an unconnected group cell, remove it from
			// the layout. We may need a custom set that holds such groups and forces
			// them to be processed for resizing and/or moving.
			

			for (var i = 0; i < candidateRoots.length; i++)
			{
				var vertexSet = Object();
				hierarchyVertices.push(vertexSet);

				this.traverse(candidateRoots[i], true, null, allVertexSet, vertexSet,
						hierarchyVertices, filledVertexSet);
			}

			for (var i = 0; i < candidateRoots.length; i++)
			{
				this.roots.push(candidateRoots[i]);
			}
			
			filledVertexSetEmpty = true;
			
			// Poor man's isSetEmpty
			for (var key in filledVertexSet)
			{
				if (filledVertexSet[key] != null)
				{
					filledVertexSetEmpty = false;
					break;
				}
			}
		}
	}
	else
	{
		// Find vertex set as directed traversal from roots

		for (var i = 0; i < this.roots.length; i++)
		{
			var vertexSet = Object();
			hierarchyVertices.push(vertexSet);

			this.traverse(this.roots[i], true, null, allVertexSet, vertexSet,
					hierarchyVertices, null);
		}
	}

	// Iterate through the result removing parents who have children in this layout
	
	// Perform a layout for each seperate hierarchy
	// Track initial coordinate x-positioning
	var initialX = 0;

	for (var i = 0; i < hierarchyVertices.length; i++)
	{
		var vertexSet = hierarchyVertices[i];
		var tmp = [];
		
		for (var key in vertexSet)
		{
			tmp.push(vertexSet[key]);
		}
		
		this.model = new mxGraphHierarchyModel(this, tmp, this.roots,
			parent, this.tightenToSource);

		this.cycleStage(parent);
		this.layeringStage();
		
		this.crossingStage(parent);
		initialX = this.placementStage(initialX, parent);
	}
};

/**
 * Function: filterDescendants
 * 
 * Creates an array of descendant cells
 */
mxHierarchicalLayout.prototype.filterDescendants = function(cell, result)
{
	var model = this.graph.model;

	if (model.isVertex(cell) && cell != this.parent && this.graph.isCellVisible(cell))
	{
		result[mxObjectIdentity.get(cell)] = cell;
	}

	if (this.traverseAncestors || cell == this.parent
			&& this.graph.isCellVisible(cell))
	{
		var childCount = model.getChildCount(cell);

		for (var i = 0; i < childCount; i++)
		{
			var child = model.getChildAt(cell, i);
			
			// Ignore ports in the layout vertex list, they are dealt with
			// in the traversal mechanisms
			if (!this.isPort(child))
			{
				this.filterDescendants(child, result);
			}
		}
	}
};

/**
 * Function: isPort
 * 
 * Returns true if the given cell is a "port", that is, when connecting to
 * it, its parent is the connecting vertex in terms of graph traversal
 * 
 * Parameters:
 * 
 * cell - <mxCell> that represents the port.
 */
mxHierarchicalLayout.prototype.isPort = function(cell)
{
	if (cell.geometry.relative)
	{
		return true;
	}
	
	return false;
};

/**
 * Function: getEdgesBetween
 * 
 * Returns the edges between the given source and target. This takes into
 * account collapsed and invisible cells and ports.
 * 
 * Parameters:
 * 
 * source -
 * target -
 * directed -
 */
mxHierarchicalLayout.prototype.getEdgesBetween = function(source, target, directed)
{
	directed = (directed != null) ? directed : false;
	var edges = this.getEdges(source);
	var result = [];

	// Checks if the edge is connected to the correct
	// cell and returns the first match
	for (var i = 0; i < edges.length; i++)
	{
		var src = this.getVisibleTerminal(edges[i], true);
		var trg = this.getVisibleTerminal(edges[i], false);

		if ((src == source && trg == target) || (!directed && src == target && trg == source))
		{
			result.push(edges[i]);
		}
	}

	return result;
};

/**
 * Traverses the (directed) graph invoking the given function for each
 * visited vertex and edge. The function is invoked with the current vertex
 * and the incoming edge as a parameter. This implementation makes sure
 * each vertex is only visited once. The function may return false if the
 * traversal should stop at the given vertex.
 * 
 * Parameters:
 * 
 * vertex - <mxCell> that represents the vertex where the traversal starts.
 * directed - boolean indicating if edges should only be traversed
 * from source to target. Default is true.
 * edge - Optional <mxCell> that represents the incoming edge. This is
 * null for the first step of the traversal.
 * allVertices - Array of cell paths for the visited cells.
 */
mxHierarchicalLayout.prototype.traverse = function(vertex, directed, edge, allVertices, currentComp,
											hierarchyVertices, filledVertexSet)
{
	if (vertex != null && allVertices != null)
	{
		// Has this vertex been seen before in any traversal
		// And if the filled vertex set is populated, only 
		// process vertices in that it contains
		var vertexID = mxObjectIdentity.get(vertex);
		
		if ((allVertices[vertexID] == null)
				&& (filledVertexSet == null ? true : filledVertexSet[vertexID] != null))
		{
			if (currentComp[vertexID] == null)
			{
				currentComp[vertexID] = vertex;
			}
			if (allVertices[vertexID] == null)
			{
				allVertices[vertexID] = vertex;
			}

			if (filledVertexSet !== null)
			{
				delete filledVertexSet[vertexID];
			}

			var edges = this.getEdges(vertex);
			var edgeIsSource = [];

			for (var i = 0; i < edges.length; i++)
			{
				edgeIsSource[i] = (this.getVisibleTerminal(edges[i], true) == vertex);
			}

			for (var i = 0; i < edges.length; i++)
			{
				if (!directed || edgeIsSource[i])
				{
					var next = this.getVisibleTerminal(edges[i], !edgeIsSource[i]);
					
					// Check whether there are more edges incoming from the target vertex than outgoing
					// The hierarchical model treats bi-directional parallel edges as being sourced
					// from the more "sourced" terminal. If the directions are equal in number, the direction
					// is that of the natural direction from the roots of the layout.
					// The checks below are slightly more verbose than need be for performance reasons
					var netCount = 1;

					for (var j = 0; j < edges.length; j++)
					{
						if (j == i)
						{
							continue;
						}
						else
						{
							var isSource2 = edgeIsSource[j];
							var otherTerm = this.getVisibleTerminal(edges[j], !isSource2);
							
							if (otherTerm == next)
							{
								if (isSource2)
								{
									netCount++;
								}
								else
								{
									netCount--;
								}
							}
						}
					}

					if (netCount >= 0)
					{
						currentComp = this.traverse(next, directed, edges[i], allVertices,
							currentComp, hierarchyVertices,
							filledVertexSet);
					}
				}
			}
		}
		else
		{
			if (currentComp[vertexID] == null)
			{
				// We've seen this vertex before, but not in the current component
				// This component and the one it's in need to be merged

				for (var i = 0; i < hierarchyVertices.length; i++)
				{
					var comp = hierarchyVertices[i];

					if (comp[vertexID] != null)
					{
						for (var key in comp)
						{
							currentComp[key] = comp[key];
						}
						
						// Remove the current component from the hierarchy set
						hierarchyVertices.splice(i, 1);
						return currentComp;
					}
				}
			}
		}
	}
	
	return currentComp;
};

/**
 * Function: cycleStage
 * 
 * Executes the cycle stage using mxMinimumCycleRemover.
 */
mxHierarchicalLayout.prototype.cycleStage = function(parent)
{
	var cycleStage = new mxMinimumCycleRemover(this);
	cycleStage.execute(parent);
};

/**
 * Function: layeringStage
 * 
 * Implements first stage of a Sugiyama layout.
 */
mxHierarchicalLayout.prototype.layeringStage = function()
{
	this.model.initialRank();
	this.model.fixRanks();
};

/**
 * Function: crossingStage
 * 
 * Executes the crossing stage using mxMedianHybridCrossingReduction.
 */
mxHierarchicalLayout.prototype.crossingStage = function(parent)
{
	var crossingStage = new mxMedianHybridCrossingReduction(this);
	crossingStage.execute(parent);
};

/**
 * Function: placementStage
 * 
 * Executes the placement stage using mxCoordinateAssignment.
 */
mxHierarchicalLayout.prototype.placementStage = function(initialX, parent)
{
	var placementStage = new mxCoordinateAssignment(this, this.intraCellSpacing,
			this.interRankCellSpacing, this.orientation, initialX,
			this.parallelEdgeSpacing);
	placementStage.fineTuning = this.fineTuning;
	placementStage.execute(parent);
	
	return placementStage.limitX + this.interHierarchySpacing;
};