BigDecimal.js 192 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
/** @license Copyright (c) 2012 Daniel Trebbien and other contributors
Portions Copyright (c) 2003 STZ-IDA and PTV AG, Karlsruhe, Germany
Portions Copyright (c) 1995-2001 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.
*/
(function () {

var MathContext = (function () {
/* Generated from 'MathContext.nrx' 8 Sep 2000 11:07:48 [v2.00] */
/* Options: Binary Comments Crossref Format Java Logo Strictargs Strictcase Trace2 Verbose3 */
//--package com.ibm.icu.math;

/* ------------------------------------------------------------------ */
/* MathContext -- Math context settings                               */
/* ------------------------------------------------------------------ */
/* Copyright IBM Corporation, 1997, 2000.  All Rights Reserved.       */
/*                                                                    */
/*   The MathContext object encapsulates the settings used by the     */
/*   BigDecimal class; it could also be used by other arithmetics.    */
/* ------------------------------------------------------------------ */
/* Notes:                                                             */
/*                                                                    */
/* 1. The properties are checked for validity on construction, so     */
/*    the BigDecimal class may assume that they are correct.          */
/* ------------------------------------------------------------------ */
/* Author:    Mike Cowlishaw                                          */
/* 1997.09.03 Initial version (edited from netrexx.lang.RexxSet)      */
/* 1997.09.12 Add lostDigits property                                 */
/* 1998.05.02 Make the class immutable and final; drop set methods    */
/* 1998.06.05 Add Round (rounding modes) property                     */
/* 1998.06.25 Rename from DecimalContext; allow digits=0              */
/* 1998.10.12 change to com.ibm.icu.math package                          */
/* 1999.02.06 add javadoc comments                                    */
/* 1999.03.05 simplify; changes from discussion with J. Bloch         */
/* 1999.03.13 1.00 release to IBM Centre for Java Technology          */
/* 1999.07.10 1.04 flag serialization unused                          */
/* 2000.01.01 1.06 copyright update                                   */
/* ------------------------------------------------------------------ */


/* JavaScript conversion (c) 2003 STZ-IDA and PTV AG, Karlsruhe, Germany */



/**
 * The <code>MathContext</code> immutable class encapsulates the
 * settings understood by the operator methods of the {@link BigDecimal}
 * class (and potentially other classes).  Operator methods are those
 * that effect an operation on a number or a pair of numbers.
 * <p>
 * The settings, which are not base-dependent, comprise:
 * <ol>
 * <li><code>digits</code>:
 * the number of digits (precision) to be used for an operation
 * <li><code>form</code>:
 * the form of any exponent that results from the operation
 * <li><code>lostDigits</code>:
 * whether checking for lost digits is enabled
 * <li><code>roundingMode</code>:
 * the algorithm to be used for rounding.
 * </ol>
 * <p>
 * When provided, a <code>MathContext</code> object supplies the
 * settings for an operation directly.
 * <p>
 * When <code>MathContext.DEFAULT</code> is provided for a
 * <code>MathContext</code> parameter then the default settings are used
 * (<code>9, SCIENTIFIC, false, ROUND_HALF_UP</code>).
 * <p>
 * In the <code>BigDecimal</code> class, all methods which accept a
 * <code>MathContext</code> object defaults) also have a version of the
 * method which does not accept a MathContext parameter.  These versions
 * carry out unlimited precision fixed point arithmetic (as though the
 * settings were (<code>0, PLAIN, false, ROUND_HALF_UP</code>).
 * <p>
 * The instance variables are shared with default access (so they are
 * directly accessible to the <code>BigDecimal</code> class), but must
 * never be changed.
 * <p>
 * The rounding mode constants have the same names and values as the
 * constants of the same name in <code>java.math.BigDecimal</code>, to
 * maintain compatibility with earlier versions of
 * <code>BigDecimal</code>.
 *
 * @see     BigDecimal
 * @author  Mike Cowlishaw
 * @stable ICU 2.0
 */


 //-- methods
 MathContext.prototype.getDigits = getDigits;
 MathContext.prototype.getForm = getForm;
 MathContext.prototype.getLostDigits = getLostDigits;
 MathContext.prototype.getRoundingMode = getRoundingMode;
 MathContext.prototype.toString = toString;
 MathContext.prototype.isValidRound = isValidRound;


 /* ----- Properties ----- */
 /* properties public constant */
 /**
  * Plain (fixed point) notation, without any exponent.
  * Used as a setting to control the form of the result of a
  * <code>BigDecimal</code> operation.
  * A zero result in plain form may have a decimal part of one or
  * more zeros.
  *
  * @see #ENGINEERING
  * @see #SCIENTIFIC
  * @stable ICU 2.0
  */
 MathContext.PLAIN = MathContext.prototype.PLAIN = 0; // [no exponent]

 /**
  * Standard floating point notation (with scientific exponential
  * format, where there is one digit before any decimal point).
  * Used as a setting to control the form of the result of a
  * <code>BigDecimal</code> operation.
  * A zero result in plain form may have a decimal part of one or
  * more zeros.
  *
  * @see #ENGINEERING
  * @see #PLAIN
  * @stable ICU 2.0
  */
 //--public static final int SCIENTIFIC=1; // 1 digit before .
 MathContext.SCIENTIFIC = MathContext.prototype.SCIENTIFIC = 1; // 1 digit before .

 /**
  * Standard floating point notation (with engineering exponential
  * format, where the power of ten is a multiple of 3).
  * Used as a setting to control the form of the result of a
  * <code>BigDecimal</code> operation.
  * A zero result in plain form may have a decimal part of one or
  * more zeros.
  *
  * @see #PLAIN
  * @see #SCIENTIFIC
  * @stable ICU 2.0
  */
 //--public static final int ENGINEERING=2; // 1-3 digits before .
 MathContext.ENGINEERING = MathContext.prototype.ENGINEERING = 2; // 1-3 digits before .

 // The rounding modes match the original BigDecimal class values
 /**
  * Rounding mode to round to a more positive number.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If any of the discarded digits are non-zero then the result
  * should be rounded towards the next more positive digit.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_CEILING=2;
 MathContext.ROUND_CEILING = MathContext.prototype.ROUND_CEILING = 2;

 /**
  * Rounding mode to round towards zero.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * All discarded digits are ignored (truncated).  The result is
  * neither incremented nor decremented.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_DOWN=1;
 MathContext.ROUND_DOWN = MathContext.prototype.ROUND_DOWN = 1;

 /**
  * Rounding mode to round to a more negative number.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If any of the discarded digits are non-zero then the result
  * should be rounded towards the next more negative digit.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_FLOOR=3;
 MathContext.ROUND_FLOOR = MathContext.prototype.ROUND_FLOOR = 3;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded down.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If the discarded digits represent greater than half (0.5 times)
  * the value of a one in the next position then the result should be
  * rounded up (away from zero).  Otherwise the discarded digits are
  * ignored.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_DOWN=5;
 MathContext.ROUND_HALF_DOWN = MathContext.prototype.ROUND_HALF_DOWN = 5;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded to the nearest even neighbor.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If the discarded digits represent greater than half (0.5 times)
  * the value of a one in the next position then the result should be
  * rounded up (away from zero).  If they represent less than half,
  * then the result should be rounded down.
  * <p>
  * Otherwise (they represent exactly half) the result is rounded
  * down if its rightmost digit is even, or rounded up if its
  * rightmost digit is odd (to make an even digit).
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_EVEN=6;
 MathContext.ROUND_HALF_EVEN = MathContext.prototype.ROUND_HALF_EVEN = 6;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded up.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If the discarded digits represent greater than or equal to half
  * (0.5 times) the value of a one in the next position then the result
  * should be rounded up (away from zero).  Otherwise the discarded
  * digits are ignored.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_UP=4;
 MathContext.ROUND_HALF_UP = MathContext.prototype.ROUND_HALF_UP = 4;

 /**
  * Rounding mode to assert that no rounding is necessary.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * Rounding (potential loss of information) is not permitted.
  * If any of the discarded digits are non-zero then an
  * <code>ArithmeticException</code> should be thrown.
  * @stable ICU 2.0
  */
 //--public static final int ROUND_UNNECESSARY=7;
 MathContext.ROUND_UNNECESSARY = MathContext.prototype.ROUND_UNNECESSARY = 7;

 /**
  * Rounding mode to round away from zero.
  * Used as a setting to control the rounding mode used during a
  * <code>BigDecimal</code> operation.
  * <p>
  * If any of the discarded digits are non-zero then the result will
  * be rounded up (away from zero).
  * @stable ICU 2.0
  */
 //--public static final int ROUND_UP=0;
 MathContext.ROUND_UP = MathContext.prototype.ROUND_UP = 0;


 /* properties shared */
 /**
  * The number of digits (precision) to be used for an operation.
  * A value of 0 indicates that unlimited precision (as many digits
  * as are required) will be used.
  * <p>
  * The {@link BigDecimal} operator methods use this value to
  * determine the precision of results.
  * Note that leading zeros (in the integer part of a number) are
  * never significant.
  * <p>
  * <code>digits</code> will always be non-negative.
  *
  * @serial
  */
 //--int digits;

 /**
  * The form of results from an operation.
  * <p>
  * The {@link BigDecimal} operator methods use this value to
  * determine the form of results, in particular whether and how
  * exponential notation should be used.
  *
  * @see #ENGINEERING
  * @see #PLAIN
  * @see #SCIENTIFIC
  * @serial
  */
 //--int form; // values for this must fit in a byte

 /**
  * Controls whether lost digits checking is enabled for an
  * operation.
  * Set to <code>true</code> to enable checking, or
  * to <code>false</code> to disable checking.
  * <p>
  * When enabled, the {@link BigDecimal} operator methods check
  * the precision of their operand or operands, and throw an
  * <code>ArithmeticException</code> if an operand is more precise
  * than the digits setting (that is, digits would be lost).
  * When disabled, operands are rounded to the specified digits.
  *
  * @serial
  */
 //--boolean lostDigits;

 /**
  * The rounding algorithm to be used for an operation.
  * <p>
  * The {@link BigDecimal} operator methods use this value to
  * determine the algorithm to be used when non-zero digits have to
  * be discarded in order to reduce the precision of a result.
  * The value must be one of the public constants whose name starts
  * with <code>ROUND_</code>.
  *
  * @see #ROUND_CEILING
  * @see #ROUND_DOWN
  * @see #ROUND_FLOOR
  * @see #ROUND_HALF_DOWN
  * @see #ROUND_HALF_EVEN
  * @see #ROUND_HALF_UP
  * @see #ROUND_UNNECESSARY
  * @see #ROUND_UP
  * @serial
  */
 //--int roundingMode;

 /* properties private constant */
 // default settings
 //--private static final int DEFAULT_FORM=SCIENTIFIC;
 //--private static final int DEFAULT_DIGITS=9;
 //--private static final boolean DEFAULT_LOSTDIGITS=false;
 //--private static final int DEFAULT_ROUNDINGMODE=ROUND_HALF_UP;
 MathContext.prototype.DEFAULT_FORM=MathContext.prototype.SCIENTIFIC;
 MathContext.prototype.DEFAULT_DIGITS=9;
 MathContext.prototype.DEFAULT_LOSTDIGITS=false;
 MathContext.prototype.DEFAULT_ROUNDINGMODE=MathContext.prototype.ROUND_HALF_UP;

 /* properties private constant */

 //--private static final int MIN_DIGITS=0; // smallest value for DIGITS.
 //--private static final int MAX_DIGITS=999999999; // largest value for DIGITS.  If increased,
 MathContext.prototype.MIN_DIGITS=0; // smallest value for DIGITS.
 MathContext.prototype.MAX_DIGITS=999999999; // largest value for DIGITS.  If increased,
 // the BigDecimal class may need update.
 // list of valid rounding mode values, most common two first
 //--private static final int ROUNDS[]=new int[]{ROUND_HALF_UP,ROUND_UNNECESSARY,ROUND_CEILING,ROUND_DOWN,ROUND_FLOOR,ROUND_HALF_DOWN,ROUND_HALF_EVEN,ROUND_UP};
 MathContext.prototype.ROUNDS=new Array(MathContext.prototype.ROUND_HALF_UP,MathContext.prototype.ROUND_UNNECESSARY,MathContext.prototype.ROUND_CEILING,MathContext.prototype.ROUND_DOWN,MathContext.prototype.ROUND_FLOOR,MathContext.prototype.ROUND_HALF_DOWN,MathContext.prototype.ROUND_HALF_EVEN,MathContext.prototype.ROUND_UP);


 //--private static final java.lang.String ROUNDWORDS[]=new java.lang.String[]{"ROUND_HALF_UP","ROUND_UNNECESSARY","ROUND_CEILING","ROUND_DOWN","ROUND_FLOOR","ROUND_HALF_DOWN","ROUND_HALF_EVEN","ROUND_UP"}; // matching names of the ROUNDS values
 MathContext.prototype.ROUNDWORDS=new Array("ROUND_HALF_UP","ROUND_UNNECESSARY","ROUND_CEILING","ROUND_DOWN","ROUND_FLOOR","ROUND_HALF_DOWN","ROUND_HALF_EVEN","ROUND_UP"); // matching names of the ROUNDS values




 /* properties private constant unused */

 // Serialization version
 //--private static final long serialVersionUID=7163376998892515376L;

 /* properties public constant */
 /**
  * A <code>MathContext</code> object initialized to the default
  * settings for general-purpose arithmetic.  That is,
  * <code>digits=9 form=SCIENTIFIC lostDigits=false
  * roundingMode=ROUND_HALF_UP</code>.
  *
  * @see #SCIENTIFIC
  * @see #ROUND_HALF_UP
  * @stable ICU 2.0
  */
 //--public static final com.ibm.icu.math.MathContext DEFAULT=new com.ibm.icu.math.MathContext(DEFAULT_DIGITS,DEFAULT_FORM,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
 MathContext.prototype.DEFAULT=new MathContext(MathContext.prototype.DEFAULT_DIGITS,MathContext.prototype.DEFAULT_FORM,MathContext.prototype.DEFAULT_LOSTDIGITS,MathContext.prototype.DEFAULT_ROUNDINGMODE);




 /* ----- Constructors ----- */

 /**
  * Constructs a new <code>MathContext</code> with a specified
  * precision.
  * The other settings are set to the default values
  * (see {@link #DEFAULT}).
  *
  * An <code>IllegalArgumentException</code> is thrown if the
  * <code>setdigits</code> parameter is out of range
  * (<0 or >999999999).
  *
  * @param setdigits     The <code>int</code> digits setting
  *                      for this <code>MathContext</code>.
  * @throws IllegalArgumentException parameter out of range.
  * @stable ICU 2.0
  */

 //--public MathContext(int setdigits){
 //-- this(setdigits,DEFAULT_FORM,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
 //-- return;}


 /**
  * Constructs a new <code>MathContext</code> with a specified
  * precision and form.
  * The other settings are set to the default values
  * (see {@link #DEFAULT}).
  *
  * An <code>IllegalArgumentException</code> is thrown if the
  * <code>setdigits</code> parameter is out of range
  * (<0 or >999999999), or if the value given for the
  * <code>setform</code> parameter is not one of the appropriate
  * constants.
  *
  * @param setdigits     The <code>int</code> digits setting
  *                      for this <code>MathContext</code>.
  * @param setform       The <code>int</code> form setting
  *                      for this <code>MathContext</code>.
  * @throws IllegalArgumentException parameter out of range.
  * @stable ICU 2.0
  */

 //--public MathContext(int setdigits,int setform){
 //-- this(setdigits,setform,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
 //-- return;}

 /**
  * Constructs a new <code>MathContext</code> with a specified
  * precision, form, and lostDigits setting.
  * The roundingMode setting is set to its default value
  * (see {@link #DEFAULT}).
  *
  * An <code>IllegalArgumentException</code> is thrown if the
  * <code>setdigits</code> parameter is out of range
  * (<0 or >999999999), or if the value given for the
  * <code>setform</code> parameter is not one of the appropriate
  * constants.
  *
  * @param setdigits     The <code>int</code> digits setting
  *                      for this <code>MathContext</code>.
  * @param setform       The <code>int</code> form setting
  *                      for this <code>MathContext</code>.
  * @param setlostdigits The <code>boolean</code> lostDigits
  *                      setting for this <code>MathContext</code>.
  * @throws IllegalArgumentException parameter out of range.
  * @stable ICU 2.0
  */

 //--public MathContext(int setdigits,int setform,boolean setlostdigits){
 //-- this(setdigits,setform,setlostdigits,DEFAULT_ROUNDINGMODE);
 //-- return;}

 /**
  * Constructs a new <code>MathContext</code> with a specified
  * precision, form, lostDigits, and roundingMode setting.
  *
  * An <code>IllegalArgumentException</code> is thrown if the
  * <code>setdigits</code> parameter is out of range
  * (<0 or >999999999), or if the value given for the
  * <code>setform</code> or <code>setroundingmode</code> parameters is
  * not one of the appropriate constants.
  *
  * @param setdigits       The <code>int</code> digits setting
  *                        for this <code>MathContext</code>.
  * @param setform         The <code>int</code> form setting
  *                        for this <code>MathContext</code>.
  * @param setlostdigits   The <code>boolean</code> lostDigits
  *                        setting for this <code>MathContext</code>.
  * @param setroundingmode The <code>int</code> roundingMode setting
  *                        for this <code>MathContext</code>.
  * @throws IllegalArgumentException parameter out of range.
  * @stable ICU 2.0
  */

 //--public MathContext(int setdigits,int setform,boolean setlostdigits,int setroundingmode){super();
 function MathContext() {
  //-- members
  this.digits = 0;
  this.form = 0; // values for this must fit in a byte
  this.lostDigits = false;
  this.roundingMode = 0;

  //-- overloaded ctor
  var setform = this.DEFAULT_FORM;
  var setlostdigits = this.DEFAULT_LOSTDIGITS;
  var setroundingmode = this.DEFAULT_ROUNDINGMODE;
  if (MathContext.arguments.length == 4)
   {
    setform = MathContext.arguments[1];
    setlostdigits = MathContext.arguments[2];
    setroundingmode = MathContext.arguments[3];
   }
  else if (MathContext.arguments.length == 3)
   {
    setform = MathContext.arguments[1];
    setlostdigits = MathContext.arguments[2];
   }
  else if (MathContext.arguments.length == 2)
   {
    setform = MathContext.arguments[1];
   }
  else if (MathContext.arguments.length != 1)
   {
    throw "MathContext(): " + MathContext.arguments.length + " arguments given; expected 1 to 4";
   }
  var setdigits = MathContext.arguments[0];


  // set values, after checking
  if (setdigits!=this.DEFAULT_DIGITS)
   {
    if (setdigits<this.MIN_DIGITS)
     throw "MathContext(): Digits too small: "+setdigits;
    if (setdigits>this.MAX_DIGITS)
     throw "MathContext(): Digits too large: "+setdigits;
   }
  {/*select*/
  if (setform==this.SCIENTIFIC)
   {} // [most common]
  else if (setform==this.ENGINEERING)
   {}
  else if (setform==this.PLAIN)
   {}
  else{
   throw "MathContext() Bad form value: "+setform;
  }
  }
  if ((!(this.isValidRound(setroundingmode))))
   throw "MathContext(): Bad roundingMode value: "+setroundingmode;
  this.digits=setdigits;
  this.form=setform;
  this.lostDigits=setlostdigits; // [no bad value possible]
  this.roundingMode=setroundingmode;
  return;}

 /**
  * Returns the digits setting.
  * This value is always non-negative.
  *
  * @return an <code>int</code> which is the value of the digits
  *         setting
  * @stable ICU 2.0
  */

 //--public int getDigits(){
 function getDigits() {
  return this.digits;
  }

 /**
  * Returns the form setting.
  * This will be one of
  * {@link #ENGINEERING},
  * {@link #PLAIN}, or
  * {@link #SCIENTIFIC}.
  *
  * @return an <code>int</code> which is the value of the form setting
  * @stable ICU 2.0
  */

 //--public int getForm(){
 function getForm() {
  return this.form;
  }

 /**
  * Returns the lostDigits setting.
  * This will be either <code>true</code> (enabled) or
  * <code>false</code> (disabled).
  *
  * @return a <code>boolean</code> which is the value of the lostDigits
  *           setting
  * @stable ICU 2.0
  */

 //--public boolean getLostDigits(){
 function getLostDigits() {
  return this.lostDigits;
  }

 /**
  * Returns the roundingMode setting.
  * This will be one of
  * {@link  #ROUND_CEILING},
  * {@link  #ROUND_DOWN},
  * {@link  #ROUND_FLOOR},
  * {@link  #ROUND_HALF_DOWN},
  * {@link  #ROUND_HALF_EVEN},
  * {@link  #ROUND_HALF_UP},
  * {@link  #ROUND_UNNECESSARY}, or
  * {@link  #ROUND_UP}.
  *
  * @return an <code>int</code> which is the value of the roundingMode
  *         setting
  * @stable ICU 2.0
  */

 //--public int getRoundingMode(){
 function getRoundingMode() {
  return this.roundingMode;
  }

 /** Returns the <code>MathContext</code> as a readable string.
  * The <code>String</code> returned represents the settings of the
  * <code>MathContext</code> object as four blank-delimited words
  * separated by a single blank and with no leading or trailing blanks,
  * as follows:
  * <ol>
  * <li>
  * <code>digits=</code>, immediately followed by
  * the value of the digits setting as a numeric word.
  * <li>
  * <code>form=</code>, immediately followed by
  * the value of the form setting as an uppercase word
  * (one of <code>SCIENTIFIC</code>, <code>PLAIN</code>, or
  * <code>ENGINEERING</code>).
  * <li>
  * <code>lostDigits=</code>, immediately followed by
  * the value of the lostDigits setting
  * (<code>1</code> if enabled, <code>0</code> if disabled).
  * <li>
  * <code>roundingMode=</code>, immediately followed by
  * the value of the roundingMode setting as a word.
  * This word will be the same as the name of the corresponding public
  * constant.
  * </ol>
  * <p>
  * For example:
  * <br><code>
  * digits=9 form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP
  * </code>
  * <p>
  * Additional words may be appended to the result of
  * <code>toString</code> in the future if more properties are added
  * to the class.
  *
  * @return a <code>String</code> representing the context settings.
  * @stable ICU 2.0
  */

 //--public java.lang.String toString(){
 function toString() {
  //--java.lang.String formstr=null;
  var formstr=null;
  //--int r=0;
  var r=0;
  //--java.lang.String roundword=null;
  var roundword=null;
  {/*select*/
  if (this.form==this.SCIENTIFIC)
   formstr="SCIENTIFIC";
  else if (this.form==this.ENGINEERING)
   formstr="ENGINEERING";
  else{
   formstr="PLAIN";/* form=PLAIN */
  }
  }
  {var $1=this.ROUNDS.length;r=0;r:for(;$1>0;$1--,r++){
   if (this.roundingMode==this.ROUNDS[r])
    {
     roundword=this.ROUNDWORDS[r];
     break r;
    }
   }
  }/*r*/
  return "digits="+this.digits+" "+"form="+formstr+" "+"lostDigits="+(this.lostDigits?"1":"0")+" "+"roundingMode="+roundword;
  }


 /* <sgml> Test whether round is valid. </sgml> */
 // This could be made shared for use by BigDecimal for setScale.

 //--private static boolean isValidRound(int testround){
 function isValidRound(testround) {
  //--int r=0;
  var r=0;
  {var $2=this.ROUNDS.length;r=0;r:for(;$2>0;$2--,r++){
   if (testround==this.ROUNDS[r])
    return true;
   }
  }/*r*/
  return false;
  }
return MathContext;
})();

var BigDecimal = (function (MathContext) {
/* Generated from 'BigDecimal.nrx' 8 Sep 2000 11:10:50 [v2.00] */
/* Options: Binary Comments Crossref Format Java Logo Strictargs Strictcase Trace2 Verbose3 */
/* ------------------------------------------------------------------ */
/* BigDecimal -- Decimal arithmetic for Java                          */
/* ------------------------------------------------------------------ */
/* Copyright IBM Corporation, 1996, 2000.  All Rights Reserved.       */
/*                                                                    */
/* The BigDecimal class provides immutable arbitrary-precision        */
/* floating point (including integer) decimal numbers.                */
/*                                                                    */
/* As the numbers are decimal, there is an exact correspondence       */
/* between an instance of a BigDecimal object and its String          */
/* representation; the BigDecimal class provides direct conversions   */
/* to and from String and character array objects, and well as        */
/* conversions to and from the Java primitive types (which may not    */
/* be exact).                                                         */
/* ------------------------------------------------------------------ */
/* Notes:                                                             */
/*                                                                    */
/* 1. A BigDecimal object is never changed in value once constructed; */
/*    this avoids the need for locking.  Note in particular that the  */
/*    mantissa array may be shared between many BigDecimal objects,   */
/*    so that once exposed it must not be altered.                    */
/*                                                                    */
/* 2. This class looks at MathContext class fields directly (for      */
/*    performance).  It must not and does not change them.            */
/*                                                                    */
/* 3. Exponent checking is delayed until finish(), as we know         */
/*    intermediate calculations cannot cause 31-bit overflow.         */
/*    [This assertion depends on MAX_DIGITS in MathContext.]          */
/*                                                                    */
/* 4. Comments for the public API now follow the javadoc conventions. */
/*    The NetRexx -comments option is used to pass these comments     */
/*    through to the generated Java code (with -format, if desired).  */
/*                                                                    */
/* 5. System.arraycopy is faster than explicit loop as follows        */
/*      Mean length 4:  equal                                         */
/*      Mean length 8:  x2                                            */
/*      Mean length 16: x3                                            */
/*      Mean length 24: x4                                            */
/*    From prior experience, we expect mean length a little below 8,  */
/*    but arraycopy is still the one to use, in general, until later  */
/*    measurements suggest otherwise.                                 */
/*                                                                    */
/* 6. 'DMSRCN' referred to below is the original (1981) IBM S/370     */
/*    assembler code implementation of the algorithms below; it is    */
/*    now called IXXRCN and is available with the OS/390 and VM/ESA   */
/*    operating systems.                                              */
/* ------------------------------------------------------------------ */
/* Change History:                                                    */
/* 1997.09.02 Initial version (derived from netrexx.lang classes)     */
/* 1997.09.12 Add lostDigits checking                                 */
/* 1997.10.06 Change mantissa to a byte array                         */
/* 1997.11.22 Rework power [did not prepare arguments, etc.]          */
/* 1997.12.13 multiply did not prepare arguments                      */
/* 1997.12.14 add did not prepare and align arguments correctly       */
/* 1998.05.02 0.07 packaging changes suggested by Sun and Oracle      */
/* 1998.05.21 adjust remainder operator finalization                  */
/* 1998.06.04 rework to pass MathContext to finish() and round()      */
/* 1998.06.06 change format to use round(); support rounding modes    */
/* 1998.06.25 rename to BigDecimal and begin merge                    */
/*            zero can now have trailing zeros (i.e., exp\=0)         */
/* 1998.06.28 new methods: movePointXxxx, scale, toBigInteger         */
/*                         unscaledValue, valueof                     */
/* 1998.07.01 improve byteaddsub to allow array reuse, etc.           */
/* 1998.07.01 make null testing explicit to avoid JIT bug [Win32]     */
/* 1998.07.07 scaled division  [divide(BigDecimal, int, int)]         */
/* 1998.07.08 setScale, faster equals                                 */
/* 1998.07.11 allow 1E6 (no sign) <sigh>; new double/float conversion */
/* 1998.10.12 change package to com.ibm.icu.math                          */
/* 1998.12.14 power operator no longer rounds RHS [to match ANSI]     */
/*            add toBigDecimal() and BigDecimal(java.math.BigDecimal) */
/* 1998.12.29 improve byteaddsub by using table lookup                */
/* 1999.02.04 lostdigits=0 behaviour rounds instead of digits+1 guard */
/* 1999.02.05 cleaner code for BigDecimal(char[])                     */
/* 1999.02.06 add javadoc comments                                    */
/* 1999.02.11 format() changed from 7 to 2 method form                */
/* 1999.03.05 null pointer checking is no longer explicit             */
/* 1999.03.05 simplify; changes from discussion with J. Bloch:        */
/*            null no longer permitted for MathContext; drop boolean, */
/*            byte, char, float, short constructor, deprecate double  */
/*            constructor, no blanks in string constructor, add       */
/*            offset and length version of char[] constructor;        */
/*            add valueOf(double); drop booleanValue, charValue;      */
/*            add ...Exact versions of remaining convertors           */
/* 1999.03.13 add toBigIntegerExact                                   */
/* 1999.03.13 1.00 release to IBM Centre for Java Technology          */
/* 1999.05.27 1.01 correct 0-0.2 bug under scaled arithmetic          */
/* 1999.06.29 1.02 constructors should not allow exponent > 9 digits  */
/* 1999.07.03 1.03 lost digits should not be checked if digits=0      */
/* 1999.07.06      lost digits Exception message changed              */
/* 1999.07.10 1.04 more work on 0-0.2 (scaled arithmetic)             */
/* 1999.07.17      improve messages from pow method                   */
/* 1999.08.08      performance tweaks                                 */
/* 1999.08.15      fastpath in multiply                               */
/* 1999.11.05 1.05 fix problem in intValueExact [e.g., 5555555555]    */
/* 1999.12.22 1.06 remove multiply fastpath, and improve performance  */
/* 2000.01.01      copyright update [Y2K has arrived]                 */
/* 2000.06.18 1.08 no longer deprecate BigDecimal(double)             */
/* ------------------------------------------------------------------ */


/* JavaScript conversion (c) 2003 STZ-IDA and PTV AG, Karlsruhe, Germany */



function div(a, b) {
    return (a-(a%b))/b;
}

BigDecimal.prototype.div = div;

function arraycopy(src, srcindex, dest, destindex, length) {
    var i;
    if (destindex > srcindex) {
        // in case src and dest are equals, but also doesn't hurt
        // if they are different
        for (i = length-1; i >= 0; --i) {
            dest[i+destindex] = src[i+srcindex];
        }
    } else {
        for (i = 0; i < length; ++i) {
            dest[i+destindex] = src[i+srcindex];
        }
    }
}

BigDecimal.prototype.arraycopy = arraycopy;

function createArrayWithZeros(length) {
    var retVal = new Array(length);
    var i;
    for (i = 0; i < length; ++i) {
        retVal[i] = 0;
    }
    return retVal;
}

BigDecimal.prototype.createArrayWithZeros = createArrayWithZeros;


/**
 * The <code>BigDecimal</code> class implements immutable
 * arbitrary-precision decimal numbers.  The methods of the
 * <code>BigDecimal</code> class provide operations for fixed and
 * floating point arithmetic, comparison, format conversions, and
 * hashing.
 * <p>
 * As the numbers are decimal, there is an exact correspondence between
 * an instance of a <code>BigDecimal</code> object and its
 * <code>String</code> representation; the <code>BigDecimal</code> class
 * provides direct conversions to and from <code>String</code> and
 * character array (<code>char[]</code>) objects, as well as conversions
 * to and from the Java primitive types (which may not be exact) and
 * <code>BigInteger</code>.
 * <p>
 * In the descriptions of constructors and methods in this documentation,
 * the value of a <code>BigDecimal</code> number object is shown as the
 * result of invoking the <code>toString()</code> method on the object.
 * The internal representation of a decimal number is neither defined
 * nor exposed, and is not permitted to affect the result of any
 * operation.
 * <p>
 * The floating point arithmetic provided by this class is defined by
 * the ANSI X3.274-1996 standard, and is also documented at
 * <code>http://www2.hursley.ibm.com/decimal</code>
 * <br><i>[This URL will change.]</i>
 *
 * <h3>Operator methods</h3>
 * <p>
 * Operations on <code>BigDecimal</code> numbers are controlled by a
 * {@link MathContext} object, which provides the context (precision and
 * other information) for the operation. Methods that can take a
 * <code>MathContext</code> parameter implement the standard arithmetic
 * operators for <code>BigDecimal</code> objects and are known as
 * <i>operator methods</i>.  The default settings provided by the
 * constant {@link MathContext#DEFAULT} (<code>digits=9,
 * form=SCIENTIFIC, lostDigits=false, roundingMode=ROUND_HALF_UP</code>)
 * perform general-purpose floating point arithmetic to nine digits of
 * precision.  The <code>MathContext</code> parameter must not be
 * <code>null</code>.
 * <p>
 * Each operator method also has a version provided which does
 * not take a <code>MathContext</code> parameter.  For this version of
 * each method, the context settings used are <code>digits=0,
 * form=PLAIN, lostDigits=false, roundingMode=ROUND_HALF_UP</code>;
 * these settings perform fixed point arithmetic with unlimited
 * precision, as defined for the original BigDecimal class in Java 1.1
 * and Java 1.2.
 * <p>
 * For monadic operators, only the optional <code>MathContext</code>
 * parameter is present; the operation acts upon the current object.
 * <p>
 * For dyadic operators, a <code>BigDecimal</code> parameter is always
 * present; it must not be <code>null</code>.
 * The operation acts with the current object being the left-hand operand
 * and the <code>BigDecimal</code> parameter being the right-hand operand.
 * <p>
 * For example, adding two <code>BigDecimal</code> objects referred to
 * by the names <code>award</code> and <code>extra</code> could be
 * written as any of:
 * <p><code>
 *     award.add(extra)
 * <br>award.add(extra, MathContext.DEFAULT)
 * <br>award.add(extra, acontext)
 * </code>
 * <p>
 * (where <code>acontext</code> is a <code>MathContext</code> object),
 * which would return a <code>BigDecimal</code> object whose value is
 * the result of adding <code>award</code> and <code>extra</code> under
 * the appropriate context settings.
 * <p>
 * When a <code>BigDecimal</code> operator method is used, a set of
 * rules define what the result will be (and, by implication, how the
 * result would be represented as a character string).
 * These rules are defined in the BigDecimal arithmetic documentation
 * (see the URL above), but in summary:
 * <ul>
 * <li>Results are normally calculated with up to some maximum number of
 * significant digits.
 * For example, if the <code>MathContext</code> parameter for an operation
 * were <code>MathContext.DEFAULT</code> then the result would be
 * rounded to 9 digits; the division of 2 by 3 would then result in
 * 0.666666667.
 * <br>
 * You can change the default of 9 significant digits by providing the
 * method with a suitable <code>MathContext</code> object. This lets you
 * calculate using as many digits as you need -- thousands, if necessary.
 * Fixed point (scaled) arithmetic is indicated by using a
 * <code>digits</code> setting of 0 (or omitting the
 * <code>MathContext</code> parameter).
 * <br>
 * Similarly, you can change the algorithm used for rounding from the
 * default "classic" algorithm.
 * <li>
 * In standard arithmetic (that is, when the <code>form</code> setting
 * is not <code>PLAIN</code>), a zero result is always expressed as the
 * single digit <code>'0'</code> (that is, with no sign, decimal point,
 * or exponent part).
 * <li>
 * Except for the division and power operators in standard arithmetic,
 * trailing zeros are preserved (this is in contrast to binary floating
 * point operations and most electronic calculators, which lose the
 * information about trailing zeros in the fractional part of results).
 * <br>
 * So, for example:
 * <p><code>
 *     new BigDecimal("2.40").add(     new BigDecimal("2"))      => "4.40"
 * <br>new BigDecimal("2.40").subtract(new BigDecimal("2"))      => "0.40"
 * <br>new BigDecimal("2.40").multiply(new BigDecimal("2"))      => "4.80"
 * <br>new BigDecimal("2.40").divide(  new BigDecimal("2"), def) => "1.2"
 * </code>
 * <p>where the value on the right of the <code>=></code> would be the
 * result of the operation, expressed as a <code>String</code>, and
 * <code>def</code> (in this and following examples) refers to
 * <code>MathContext.DEFAULT</code>).
 * This preservation of trailing zeros is desirable for most
 * calculations (including financial calculations).
 * If necessary, trailing zeros may be easily removed using division by 1.
 * <li>
 * In standard arithmetic, exponential form is used for a result
 * depending on its value and the current setting of <code>digits</code>
 * (the default is 9 digits).
 * If the number of places needed before the decimal point exceeds the
 * <code>digits</code> setting, or the absolute value of the number is
 * less than <code>0.000001</code>, then the number will be expressed in
 * exponential notation; thus
 * <p><code>
 *   new BigDecimal("1e+6").multiply(new BigDecimal("1e+6"), def)
 * </code>
 * <p>results in <code>1E+12</code> instead of
 * <code>1000000000000</code>, and
 * <p><code>
 *   new BigDecimal("1").divide(new BigDecimal("3E+10"), def)
 * </code>
 * <p>results in <code>3.33333333E-11</code> instead of
 * <code>0.0000000000333333333</code>.
 * <p>
 * The form of the exponential notation (scientific or engineering) is
 * determined by the <code>form</code> setting.
 * <eul>
 * <p>
 * The names of methods in this class follow the conventions established
 * by <code>java.lang.Number</code>, <code>java.math.BigInteger</code>,
 * and <code>java.math.BigDecimal</code> in Java 1.1 and Java 1.2.
 *
 * @see     MathContext
 * @author  Mike Cowlishaw
 * @stable ICU 2.0
 */


 //-- methods
 BigDecimal.prototype.abs = abs;
 BigDecimal.prototype.add = add;
 BigDecimal.prototype.compareTo = compareTo;
 BigDecimal.prototype.divide = divide;
 BigDecimal.prototype.divideInteger = divideInteger;
 BigDecimal.prototype.max = max;
 BigDecimal.prototype.min = min;
 BigDecimal.prototype.multiply = multiply;
 BigDecimal.prototype.negate = negate;
 BigDecimal.prototype.plus = plus;
 BigDecimal.prototype.pow = pow;
 BigDecimal.prototype.remainder = remainder;
 BigDecimal.prototype.subtract = subtract;
 BigDecimal.prototype.equals = equals;
 BigDecimal.prototype.format = format;
 BigDecimal.prototype.intValueExact = intValueExact;
 BigDecimal.prototype.movePointLeft = movePointLeft;
 BigDecimal.prototype.movePointRight = movePointRight;
 BigDecimal.prototype.scale = scale;
 BigDecimal.prototype.setScale = setScale;
 BigDecimal.prototype.signum = signum;
 BigDecimal.prototype.toString = toString;
 BigDecimal.prototype.layout = layout;
 BigDecimal.prototype.intcheck = intcheck;
 BigDecimal.prototype.dodivide = dodivide;
 BigDecimal.prototype.bad = bad;
 BigDecimal.prototype.badarg = badarg;
 BigDecimal.prototype.extend = extend;
 BigDecimal.prototype.byteaddsub = byteaddsub;
 BigDecimal.prototype.diginit = diginit;
 BigDecimal.prototype.clone = clone;
 BigDecimal.prototype.checkdigits = checkdigits;
 BigDecimal.prototype.round = round;
 BigDecimal.prototype.allzero = allzero;
 BigDecimal.prototype.finish = finish;

 // Convenience methods
 BigDecimal.prototype.isGreaterThan = isGreaterThan;
 BigDecimal.prototype.isLessThan = isLessThan;
 BigDecimal.prototype.isGreaterThanOrEqualTo = isGreaterThanOrEqualTo;
 BigDecimal.prototype.isLessThanOrEqualTo = isLessThanOrEqualTo;
 BigDecimal.prototype.isPositive = isPositive;
 BigDecimal.prototype.isNegative = isNegative;
 BigDecimal.prototype.isZero = isZero;


 /* ----- Constants ----- */
 /* properties constant public */ // useful to others
 // the rounding modes (copied here for upwards compatibility)
 /**
  * Rounding mode to round to a more positive number.
  * @see MathContext#ROUND_CEILING
  * @stable ICU 2.0
  */
 //--public static final int ROUND_CEILING=com.ibm.icu.math.MathContext.ROUND_CEILING;
 BigDecimal.ROUND_CEILING = BigDecimal.prototype.ROUND_CEILING = MathContext.prototype.ROUND_CEILING;

 /**
  * Rounding mode to round towards zero.
  * @see MathContext#ROUND_DOWN
  * @stable ICU 2.0
  */
 //--public static final int ROUND_DOWN=com.ibm.icu.math.MathContext.ROUND_DOWN;
 BigDecimal.ROUND_DOWN = BigDecimal.prototype.ROUND_DOWN = MathContext.prototype.ROUND_DOWN;

 /**
  * Rounding mode to round to a more negative number.
  * @see MathContext#ROUND_FLOOR
  * @stable ICU 2.0
  */
 //--public static final int ROUND_FLOOR=com.ibm.icu.math.MathContext.ROUND_FLOOR;
 BigDecimal.ROUND_FLOOR = BigDecimal.prototype.ROUND_FLOOR = MathContext.prototype.ROUND_FLOOR;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded down.
  * @see MathContext#ROUND_HALF_DOWN
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_DOWN=com.ibm.icu.math.MathContext.ROUND_HALF_DOWN;
 BigDecimal.ROUND_HALF_DOWN = BigDecimal.prototype.ROUND_HALF_DOWN = MathContext.prototype.ROUND_HALF_DOWN;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded to the nearest even neighbor.
  * @see MathContext#ROUND_HALF_EVEN
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_EVEN=com.ibm.icu.math.MathContext.ROUND_HALF_EVEN;
 BigDecimal.ROUND_HALF_EVEN = BigDecimal.prototype.ROUND_HALF_EVEN = MathContext.prototype.ROUND_HALF_EVEN;

 /**
  * Rounding mode to round to nearest neighbor, where an equidistant
  * value is rounded up.
  * @see MathContext#ROUND_HALF_UP
  * @stable ICU 2.0
  */
 //--public static final int ROUND_HALF_UP=com.ibm.icu.math.MathContext.ROUND_HALF_UP;
 BigDecimal.ROUND_HALF_UP = BigDecimal.prototype.ROUND_HALF_UP = MathContext.prototype.ROUND_HALF_UP;

 /**
  * Rounding mode to assert that no rounding is necessary.
  * @see MathContext#ROUND_UNNECESSARY
  * @stable ICU 2.0
  */
 //--public static final int ROUND_UNNECESSARY=com.ibm.icu.math.MathContext.ROUND_UNNECESSARY;
 BigDecimal.ROUND_UNNECESSARY = BigDecimal.prototype.ROUND_UNNECESSARY = MathContext.prototype.ROUND_UNNECESSARY;

 /**
  * Rounding mode to round away from zero.
  * @see MathContext#ROUND_UP
  * @stable ICU 2.0
  */
 //--public static final int ROUND_UP=com.ibm.icu.math.MathContext.ROUND_UP;
 BigDecimal.ROUND_UP = BigDecimal.prototype.ROUND_UP = MathContext.prototype.ROUND_UP;

 /* properties constant private */ // locals
 //--private static final byte ispos=1; // ind: indicates positive (must be 1)
 //--private static final byte iszero=0; // ind: indicates zero     (must be 0)
 //--private static final byte isneg=-1; // ind: indicates negative (must be -1)
 BigDecimal.prototype.ispos = 1;
 BigDecimal.prototype.iszero = 0;
 BigDecimal.prototype.isneg = -1;
 // [later could add NaN, +/- infinity, here]

 //--private static final int MinExp=-999999999; // minimum exponent allowed
 //--private static final int MaxExp=999999999; // maximum exponent allowed
 //--private static final int MinArg=-999999999; // minimum argument integer
 //--private static final int MaxArg=999999999; // maximum argument integer
 BigDecimal.prototype.MinExp=-999999999; // minimum exponent allowed
 BigDecimal.prototype.MaxExp=999999999; // maximum exponent allowed
 BigDecimal.prototype.MinArg=-999999999; // minimum argument integer
 BigDecimal.prototype.MaxArg=999999999; // maximum argument integer

 //--private static final com.ibm.icu.math.MathContext plainMC=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN); // context for plain unlimited math
 BigDecimal.prototype.plainMC=new MathContext(0, MathContext.prototype.PLAIN);

 /* properties constant private unused */ // present but not referenced

 // Serialization version
 //--private static final long serialVersionUID=8245355804974198832L;

 //--private static final java.lang.String copyright=" Copyright (c) IBM Corporation 1996, 2000.  All rights reserved. ";

 /* properties static private */
 // Precalculated constant arrays (used by byteaddsub)
 //--private static byte bytecar[]=new byte[(90+99)+1]; // carry/borrow array
 //--private static byte bytedig[]=diginit(); // next digit array
 BigDecimal.prototype.bytecar = new Array((90+99)+1);
 BigDecimal.prototype.bytedig = diginit();

 /**
  * The <code>BigDecimal</code> constant "0".
  *
  * @see #ONE
  * @see #TEN
  * @stable ICU 2.0
  */
 //--public static final com.ibm.icu.math.BigDecimal ZERO=new com.ibm.icu.math.BigDecimal((long)0); // use long as we want the int constructor
 // .. to be able to use this, for speed
BigDecimal.ZERO = BigDecimal.prototype.ZERO = new BigDecimal("0");

 /**
  * The <code>BigDecimal</code> constant "1".
  *
  * @see #TEN
  * @see #ZERO
  * @stable ICU 2.0
  */
 //--public static final com.ibm.icu.math.BigDecimal ONE=new com.ibm.icu.math.BigDecimal((long)1); // use long as we want the int constructor
 // .. to be able to use this, for speed
BigDecimal.ONE = BigDecimal.prototype.ONE = new BigDecimal("1");

 /**
  * The <code>BigDecimal</code> constant "10".
  *
  * @see #ONE
  * @see #ZERO
  * @stable ICU 2.0
  */
 //--public static final com.ibm.icu.math.BigDecimal TEN=new com.ibm.icu.math.BigDecimal(10);
 BigDecimal.TEN = BigDecimal.prototype.TEN = new BigDecimal("10");

 /* ----- Instance properties [all private and immutable] ----- */
 /* properties private */

 /**
  * The indicator. This may take the values:
  * <ul>
  * <li>ispos  -- the number is positive
  * <li>iszero -- the number is zero
  * <li>isneg  -- the number is negative
  * </ul>
  *
  * @serial
  */
 //--private byte ind; // assumed undefined
 // Note: some code below assumes IND = Sign [-1, 0, 1], at present.
 // We only need two bits for this, but use a byte [also permits
 // smooth future extension].

 /**
  * The formatting style. This may take the values:
  * <ul>
  * <li>MathContext.PLAIN        -- no exponent needed
  * <li>MathContext.SCIENTIFIC   -- scientific notation required
  * <li>MathContext.ENGINEERING  -- engineering notation required
  * </ul>
  * <p>
  * This property is an optimization; it allows us to defer number
  * layout until it is actually needed as a string, hence avoiding
  * unnecessary formatting.
  *
  * @serial
  */
 //--private byte form=(byte)com.ibm.icu.math.MathContext.PLAIN; // assumed PLAIN
 // We only need two bits for this, at present, but use a byte
 // [again, to allow for smooth future extension]

 /**
  * The value of the mantissa.
  * <p>
  * Once constructed, this may become shared between several BigDecimal
  * objects, so must not be altered.
  * <p>
  * For efficiency (speed), this is a byte array, with each byte
  * taking a value of 0 -> 9.
  * <p>
  * If the first byte is 0 then the value of the number is zero (and
  * mant.length=1, except when constructed from a plain number, for
  * example, 0.000).
  *
  * @serial
  */
 //--private byte mant[]; // assumed null

 /**
  * The exponent.
  * <p>
  * For fixed point arithmetic, scale is <code>-exp</code>, and can
  * apply to zero.
  *
  * Note that this property can have a value less than MinExp when
  * the mantissa has more than one digit.
  *
  * @serial
  */
 //--private int exp;
 // assumed 0

 /* ---------------------------------------------------------------- */
 /* Constructors                                                     */
 /* ---------------------------------------------------------------- */

 /**
  * Constructs a <code>BigDecimal</code> object from a
  * <code>java.math.BigDecimal</code>.
  * <p>
  * Constructs a <code>BigDecimal</code> as though the parameter had
  * been represented as a <code>String</code> (using its
  * <code>toString</code> method) and the
  * {@link #BigDecimal(java.lang.String)} constructor had then been
  * used.
  * The parameter must not be <code>null</code>.
  * <p>
  * <i>(Note: this constructor is provided only in the
  * <code>com.ibm.icu.math</code> version of the BigDecimal class.
  * It would not be present in a <code>java.math</code> version.)</i>
  *
  * @param bd The <code>BigDecimal</code> to be translated.
  * @stable ICU 2.0
  */

 //--public BigDecimal(java.math.BigDecimal bd){
 //-- this(bd.toString());
 //-- return;}

 /**
  * Constructs a <code>BigDecimal</code> object from a
  * <code>BigInteger</code>, with scale 0.
  * <p>
  * Constructs a <code>BigDecimal</code> which is the exact decimal
  * representation of the <code>BigInteger</code>, with a scale of
  * zero.
  * The value of the <code>BigDecimal</code> is identical to the value
  * of the <code>BigInteger</code>.
  * The parameter must not be <code>null</code>.
  * <p>
  * The <code>BigDecimal</code> will contain only decimal digits,
  * prefixed with a leading minus sign (hyphen) if the
  * <code>BigInteger</code> is negative.  A leading zero will be
  * present only if the <code>BigInteger</code> is zero.
  *
  * @param bi The <code>BigInteger</code> to be converted.
  * @stable ICU 2.0
  */

 //--public BigDecimal(java.math.BigInteger bi){
 //-- this(bi.toString(10));
 //-- return;}
 // exp remains 0

 /**
  * Constructs a <code>BigDecimal</code> object from a
  * <code>BigInteger</code> and a scale.
  * <p>
  * Constructs a <code>BigDecimal</code> which is the exact decimal
  * representation of the <code>BigInteger</code>, scaled by the
  * second parameter, which may not be negative.
  * The value of the <code>BigDecimal</code> is the
  * <code>BigInteger</code> divided by ten to the power of the scale.
  * The <code>BigInteger</code> parameter must not be
  * <code>null</code>.
  * <p>
  * The <code>BigDecimal</code> will contain only decimal digits, (with
  * an embedded decimal point followed by <code>scale</code> decimal
  * digits if the scale is positive), prefixed with a leading minus
  * sign (hyphen) if the <code>BigInteger</code> is negative.  A
  * leading zero will be present only if the <code>BigInteger</code> is
  * zero.
  *
  * @param  bi    The <code>BigInteger</code> to be converted.
  * @param  scale The <code>int</code> specifying the scale.
  * @throws NumberFormatException if the scale is negative.
  * @stable ICU 2.0
  */

 //--public BigDecimal(java.math.BigInteger bi,int scale){
 //-- this(bi.toString(10));
 //-- if (scale<0)
 //--  throw new java.lang.NumberFormatException("Negative scale:"+" "+scale);
 //-- exp=(int)-scale; // exponent is -scale
 //-- return;}

 /**
  * Constructs a <code>BigDecimal</code> object from an array of characters.
  * <p>
  * Constructs a <code>BigDecimal</code> as though a
  * <code>String</code> had been constructed from the character array
  * and the {@link #BigDecimal(java.lang.String)} constructor had then
  * been used. The parameter must not be <code>null</code>.
  * <p>
  * Using this constructor is faster than using the
  * <code>BigDecimal(String)</code> constructor if the string is
  * already available in character array form.
  *
  * @param inchars The <code>char[]</code> array containing the number
  *                to be converted.
  * @throws NumberFormatException if the parameter is not a valid
  *                number.
  * @stable ICU 2.0
  */

 //--public BigDecimal(char inchars[]){
 //-- this(inchars,0,inchars.length);
 //-- return;}

 /**
  * Constructs a <code>BigDecimal</code> object from an array of characters.
  * <p>
  * Constructs a <code>BigDecimal</code> as though a
  * <code>String</code> had been constructed from the character array
  * (or a subarray of that array) and the
  * {@link #BigDecimal(java.lang.String)} constructor had then been
  * used. The first parameter must not be <code>null</code>, and the
  * subarray must be wholly contained within it.
  * <p>
  * Using this constructor is faster than using the
  * <code>BigDecimal(String)</code> constructor if the string is
  * already available within a character array.
  *
  * @param inchars The <code>char[]</code> array containing the number
  *                to be converted.
  * @param offset  The <code>int</code> offset into the array of the
  *                start of the number to be converted.
  * @param length  The <code>int</code> length of the number.
  * @throws NumberFormatException if the parameter is not a valid
  *                number for any reason.
  * @stable ICU 2.0
  */

 //--public BigDecimal(char inchars[],int offset,int length){super();
 function BigDecimal() {
  //-- members
  this.ind = 0;
  this.form = MathContext.prototype.PLAIN;
  this.mant = null;
  this.exp = 0;

  //-- overloaded ctor
  if (BigDecimal.arguments.length == 0)
   return;
  var inchars;
  var offset;
  var length;
  if (BigDecimal.arguments.length == 1)
   {
    inchars = BigDecimal.arguments[0];
    offset = 0;
    length = inchars.length;
   }
  else
   {
    inchars = BigDecimal.arguments[0];
    offset = BigDecimal.arguments[1];
    length = BigDecimal.arguments[2];
   }
  if (typeof inchars == "string")
   {
    inchars = inchars.split("");
   }

  //--boolean exotic;
  var exotic;
  //--boolean hadexp;
  var hadexp;
  //--int d;
  var d;
  //--int dotoff;
  var dotoff;
  //--int last;
  var last;
  //--int i=0;
  var i=0;
  //--char si=0;
  var si=0;
  //--boolean eneg=false;
  var eneg=false;
  //--int k=0;
  var k=0;
  //--int elen=0;
  var elen=0;
  //--int j=0;
  var j=0;
  //--char sj=0;
  var sj=0;
  //--int dvalue=0;
  var dvalue=0;
  //--int mag=0;
  var mag=0;
  // This is the primary constructor; all incoming strings end up
  // here; it uses explicit (inline) parsing for speed and to avoid
  // generating intermediate (temporary) objects of any kind.
  // 1998.06.25: exponent form built only if E/e in string
  // 1998.06.25: trailing zeros not removed for zero
  // 1999.03.06: no embedded blanks; allow offset and length
  if (length<=0)
   this.bad("BigDecimal(): ", inchars); // bad conversion (empty string)
  // [bad offset will raise array bounds exception]

  /* Handle and step past sign */
  this.ind=this.ispos; // assume positive
  if (inchars[0]==('-'))
   {
    length--;
    if (length==0)
     this.bad("BigDecimal(): ", inchars); // nothing after sign
    this.ind=this.isneg;
    offset++;
   }
  else
   if (inchars[0]==('+'))
    {
     length--;
     if (length==0)
      this.bad("BigDecimal(): ", inchars); // nothing after sign
     offset++;
    }

  /* We're at the start of the number */
  exotic=false; // have extra digits
  hadexp=false; // had explicit exponent
  d=0; // count of digits found
  dotoff=-1; // offset where dot was found
  last=-1; // last character of mantissa
  {var $1=length;i=offset;i:for(;$1>0;$1--,i++){
   si=inchars[i];
   if (si>='0')  // test for Arabic digit
    if (si<='9')
     {
      last=i;
      d++; // still in mantissa
      continue i;
     }
   if (si=='.')
    { // record and ignore
     if (dotoff>=0)
      this.bad("BigDecimal(): ", inchars); // two dots
     dotoff=i-offset; // offset into mantissa
     continue i;
    }
   if (si!='e')
    if (si!='E')
     { // expect an extra digit
      if (si<'0' || si>'9')
       this.bad("BigDecimal(): ", inchars); // not a number
      // defer the base 10 check until later to avoid extra method call
      exotic=true; // will need conversion later
      last=i;
      d++; // still in mantissa
      continue i;
     }
   /* Found 'e' or 'E' -- now process explicit exponent */
   // 1998.07.11: sign no longer required
   if ((i-offset)>(length-2))
    this.bad("BigDecimal(): ", inchars); // no room for even one digit
   eneg=false;
   if ((inchars[i+1])==('-'))
    {
     eneg=true;
     k=i+2;
    }
   else
    if ((inchars[i+1])==('+'))
     k=i+2;
    else
     k=i+1;
   // k is offset of first expected digit
   elen=length-((k-offset)); // possible number of digits
   if ((elen==0)||(elen>9))
    this.bad("BigDecimal(): ", inchars); // 0 or more than 9 digits
   {var $2=elen;j=k;j:for(;$2>0;$2--,j++){
    sj=inchars[j];
    if (sj<'0')
     this.bad("BigDecimal(): ", inchars); // always bad
    if (sj>'9')
     { // maybe an exotic digit
      /*if (si<'0' || si>'9')
       this.bad(inchars); // not a number
      dvalue=java.lang.Character.digit(sj,10); // check base
      if (dvalue<0)
       bad(inchars); // not base 10*/
      this.bad("BigDecimal(): ", inchars);
     }
    else
     dvalue=sj-'0';
    this.exp=(this.exp*10)+dvalue;
    }
   }/*j*/
   if (eneg)
    this.exp=-this.exp; // was negative
   hadexp=true; // remember we had one
   break i; // we are done
   }
  }/*i*/

  /* Here when all inspected */
  if (d==0)
   this.bad("BigDecimal(): ", inchars); // no mantissa digits
  if (dotoff>=0)
   this.exp=(this.exp+dotoff)-d; // adjust exponent if had dot

  /* strip leading zeros/dot (leave final if all 0's) */
  {var $3=last-1;i=offset;i:for(;i<=$3;i++){
   si=inchars[i];
   if (si=='0')
    {
     offset++;
     dotoff--;
     d--;
    }
   else
    if (si=='.')
     {
      offset++; // step past dot
      dotoff--;
     }
    else
     if (si<='9')
      break i;/* non-0 */
     else
      {/* exotic */
       //if ((java.lang.Character.digit(si,10))!=0)
        break i; // non-0 or bad
       // is 0 .. strip like '0'
       //offset++;
       //dotoff--;
       //d--;
      }
   }
  }/*i*/

  /* Create the mantissa array */
  this.mant=new Array(d); // we know the length
  j=offset; // input offset
  if (exotic)
   {exotica:do{ // slow: check for exotica
    {var $4=d;i=0;i:for(;$4>0;$4--,i++){
     if (i==dotoff)
      j++; // at dot
     sj=inchars[j];
     if (sj<='9')
      this.mant[i]=sj-'0';/* easy */
     else
      {
       //dvalue=java.lang.Character.digit(sj,10);
       //if (dvalue<0)
        this.bad("BigDecimal(): ", inchars); // not a number after all
       //mant[i]=(byte)dvalue;
      }
     j++;
     }
    }/*i*/
   }while(false);}/*exotica*/
  else
   {simple:do{
    {var $5=d;i=0;i:for(;$5>0;$5--,i++){
     if (i==dotoff)
      j++;
     this.mant[i]=inchars[j]-'0';
     j++;
     }
    }/*i*/
   }while(false);}/*simple*/

  /* Looks good.  Set the sign indicator and form, as needed. */
  // Trailing zeros are preserved
  // The rule here for form is:
  //   If no E-notation, then request plain notation
  //   Otherwise act as though add(0,DEFAULT) and request scientific notation
  // [form is already PLAIN]
  if (this.mant[0]==0)
   {
    this.ind=this.iszero; // force to show zero
    // negative exponent is significant (e.g., -3 for 0.000) if plain
    if (this.exp>0)
     this.exp=0; // positive exponent can be ignored
    if (hadexp)
     { // zero becomes single digit from add
      this.mant=this.ZERO.mant;
      this.exp=0;
     }
   }
  else
   { // non-zero
    // [ind was set earlier]
    // now determine form
    if (hadexp)
     {
      this.form=MathContext.prototype.SCIENTIFIC;
      // 1999.06.29 check for overflow
      mag=(this.exp+this.mant.length)-1; // true exponent in scientific notation
      if ((mag<this.MinExp)||(mag>this.MaxExp))
       this.bad("BigDecimal(): ", inchars);
     }
   }
  // say 'BD(c[]): mant[0] mantlen exp ind form:' mant[0] mant.length exp ind form
  return;
  }

 /**
  * Constructs a <code>BigDecimal</code> object directly from a
  * <code>double</code>.
  * <p>
  * Constructs a <code>BigDecimal</code> which is the exact decimal
  * representation of the 64-bit signed binary floating point
  * parameter.
  * <p>
  * Note that this constructor it an exact conversion; it does not give
  * the same result as converting <code>num</code> to a
  * <code>String</code> using the <code>Double.toString()</code> method
  * and then using the {@link #BigDecimal(java.lang.String)}
  * constructor.
  * To get that result, use the static {@link #valueOf(double)}
  * method to construct a <code>BigDecimal</code> from a
  * <code>double</code>.
  *
  * @param num The <code>double</code> to be converted.
  * @throws NumberFormatException if the parameter is infinite or
  *            not a number.
  * @stable ICU 2.0
  */

 //--public BigDecimal(double num){
 //-- // 1999.03.06: use exactly the old algorithm
 //-- // 2000.01.01: note that this constructor does give an exact result,
 //-- //             so perhaps it should not be deprecated
 //-- // 2000.06.18: no longer deprecated
 //-- this((new java.math.BigDecimal(num)).toString());
 //-- return;}

 /**
  * Constructs a <code>BigDecimal</code> object directly from a
  * <code>int</code>.
  * <p>
  * Constructs a <code>BigDecimal</code> which is the exact decimal
  * representation of the 32-bit signed binary integer parameter.
  * The <code>BigDecimal</code> will contain only decimal digits,
  * prefixed with a leading minus sign (hyphen) if the parameter is
  * negative.
  * A leading zero will be present only if the parameter is zero.
  *
  * @param num The <code>int</code> to be converted.
  * @stable ICU 2.0
  */

 //--public BigDecimal(int num){super();
 //-- int mun;
 //-- int i=0;
 //-- // We fastpath commoners
 //-- if (num<=9)
 //--  if (num>=(-9))
 //--   {singledigit:do{
 //--    // very common single digit case
 //--    {/*select*/
 //--    if (num==0)
 //--     {
 //--      mant=ZERO.mant;
 //--      ind=iszero;
 //--     }
 //--    else if (num==1)
 //--     {
 //--      mant=ONE.mant;
 //--      ind=ispos;
 //--     }
 //--    else if (num==(-1))
 //--     {
 //--      mant=ONE.mant;
 //--      ind=isneg;
 //--     }
 //--    else{
 //--     {
 //--      mant=new byte[1];
 //--      if (num>0)
 //--       {
 //--        mant[0]=(byte)num;
 //--        ind=ispos;
 //--       }
 //--      else
 //--       { // num<-1
 //--        mant[0]=(byte)((int)-num);
 //--        ind=isneg;
 //--       }
 //--     }
 //--    }
 //--    }
 //--    return;
 //--   }while(false);}/*singledigit*/
 //--
 //-- /* We work on negative numbers so we handle the most negative number */
 //-- if (num>0)
 //--  {
 //--   ind=ispos;
 //--   num=(int)-num;
 //--  }
 //-- else
 //--  ind=isneg;/* negative */ // [0 case already handled]
 //-- // [it is quicker, here, to pre-calculate the length with
 //-- // one loop, then allocate exactly the right length of byte array,
 //-- // then re-fill it with another loop]
 //-- mun=num; // working copy
 //-- {i=9;i:for(;;i--){
 //--  mun=mun/10;
 //--  if (mun==0)
 //--   break i;
 //--  }
 //-- }/*i*/
 //-- // i is the position of the leftmost digit placed
 //-- mant=new byte[10-i];
 //-- {i=(10-i)-1;i:for(;;i--){
 //--  mant[i]=(byte)-(((byte)(num%10)));
 //--  num=num/10;
 //--  if (num==0)
 //--   break i;
 //--  }
 //-- }/*i*/
 //-- return;
 //-- }

 /**
  * Constructs a <code>BigDecimal</code> object directly from a
  * <code>long</code>.
  * <p>
  * Constructs a <code>BigDecimal</code> which is the exact decimal
  * representation of the 64-bit signed binary integer parameter.
  * The <code>BigDecimal</code> will contain only decimal digits,
  * prefixed with a leading minus sign (hyphen) if the parameter is
  * negative.
  * A leading zero will be present only if the parameter is zero.
  *
  * @param num The <code>long</code> to be converted.
  * @stable ICU 2.0
  */

 //--public BigDecimal(long num){super();
 //-- long mun;
 //-- int i=0;
 //-- // Not really worth fastpathing commoners in this constructor [also,
 //-- // we use this to construct the static constants].
 //-- // This is much faster than: this(String.valueOf(num).toCharArray())
 //-- /* We work on negative num so we handle the most negative number */
 //-- if (num>0)
 //--  {
 //--   ind=ispos;
 //--   num=(long)-num;
 //--  }
 //-- else
 //--  if (num==0)
 //--   ind=iszero;
 //--  else
 //--   ind=isneg;/* negative */
 //-- mun=num;
 //-- {i=18;i:for(;;i--){
 //--  mun=mun/10;
 //--  if (mun==0)
 //--   break i;
 //--  }
 //-- }/*i*/
 //-- // i is the position of the leftmost digit placed
 //-- mant=new byte[19-i];
 //-- {i=(19-i)-1;i:for(;;i--){
 //--  mant[i]=(byte)-(((byte)(num%10)));
 //--  num=num/10;
 //--  if (num==0)
 //--   break i;
 //--  }
 //-- }/*i*/
 //-- return;
 //-- }

 /**
  * Constructs a <code>BigDecimal</code> object from a <code>String</code>.
  * <p>
  * Constructs a <code>BigDecimal</code> from the parameter, which must
  * not be <code>null</code> and must represent a valid <i>number</i>,
  * as described formally in the documentation referred to
  * {@link BigDecimal above}.
  * <p>
  * In summary, numbers in <code>String</code> form must have at least
  * one digit, may have a leading sign, may have a decimal point, and
  * exponential notation may be used.  They follow conventional syntax,
  * and may not contain blanks.
  * <p>
  * Some valid strings from which a <code>BigDecimal</code> might
  * be constructed are:
  * <pre>
  *       "0"         -- Zero
  *      "12"         -- A whole number
  *     "-76"         -- A signed whole number
  *      "12.70"      -- Some decimal places
  *     "+0.003"      -- Plus sign is allowed
  *      "17."        -- The same as 17
  *        ".5"       -- The same as 0.5
  *      "4E+9"       -- Exponential notation
  *       "0.73e-7"   -- Exponential notation
  * </pre>
  * <p>
  * (Exponential notation means that the number includes an optional
  * sign and a power of ten following an '</code>E</code>' that
  * indicates how the decimal point will be shifted.  Thus the
  * <code>"4E+9"</code> above is just a short way of writing
  * <code>4000000000</code>, and the <code>"0.73e-7"</code> is short
  * for <code>0.000000073</code>.)
  * <p>
  * The <code>BigDecimal</code> constructed from the String is in a
  * standard form, with no blanks, as though the
  * {@link #add(BigDecimal)} method had been used to add zero to the
  * number with unlimited precision.
  * If the string uses exponential notation (that is, includes an
  * <code>e</code> or an <code>E</code>), then the
  * <code>BigDecimal</code> number will be expressed in scientific
  * notation (where the power of ten is adjusted so there is a single
  * non-zero digit to the left of the decimal point); in this case if
  * the number is zero then it will be expressed as the single digit 0,
  * and if non-zero it will have an exponent unless that exponent would
  * be 0.  The exponent must fit in nine digits both before and after it
  * is expressed in scientific notation.
  * <p>
  * Any digits in the parameter must be decimal; that is,
  * <code>Character.digit(c, 10)</code> (where </code>c</code> is the
  * character in question) would not return -1.
  *
  * @param string The <code>String</code> to be converted.
  * @throws NumberFormatException if the parameter is not a valid
  * number.
  * @stable ICU 2.0
  */

 //--public BigDecimal(java.lang.String string){
 //-- this(string.toCharArray(),0,string.length());
 //-- return;}

 /* <sgml> Make a default BigDecimal object for local use. </sgml> */

 //--private BigDecimal(){super();
 //-- return;
 //-- }

 /* ---------------------------------------------------------------- */
 /* Operator methods [methods which take a context parameter]        */
 /* ---------------------------------------------------------------- */

 /**
  * Returns a plain <code>BigDecimal</code> whose value is the absolute
  * value of this <code>BigDecimal</code>.
  * <p>
  * The same as {@link #abs(MathContext)}, where the context is
  * <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will
  * be <code>this.scale()</code>
  *
  * @return A <code>BigDecimal</code> whose value is the absolute
  *         value of this <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal abs(){
 //- return this.abs(plainMC);
 //- }

 /**
  * Returns a <code>BigDecimal</code> whose value is the absolute value
  * of this <code>BigDecimal</code>.
  * <p>
  * If the current object is zero or positive, then the same result as
  * invoking the {@link #plus(MathContext)} method with the same
  * parameter is returned.
  * Otherwise, the same result as invoking the
  * {@link #negate(MathContext)} method with the same parameter is
  * returned.
  *
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is the absolute
  *             value of this <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal abs(com.ibm.icu.math.MathContext set){
 function abs() {
  var set;
  if (abs.arguments.length == 1)
   {
    set = abs.arguments[0];
   }
  else if (abs.arguments.length == 0)
   {
    set = this.plainMC;
   }
  else
   {
    throw "abs(): " + abs.arguments.length + " arguments given; expected 0 or 1";
   }
  if (this.ind==this.isneg)
   return this.negate(set);
  return this.plus(set);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this+rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #add(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * the maximum of the scales of the two operands.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the addition.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this+rhs</code>, using fixed point arithmetic.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal add(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.add(rhs,plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>this+rhs</code>.
  * <p>
  * Implements the addition (<b><code>+</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the addition.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this+rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal add(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function add() {
  var set;
  if (add.arguments.length == 2)
   {
    set = add.arguments[1];
   }
  else if (add.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "add(): " + add.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = add.arguments[0];
  //--com.ibm.icu.math.BigDecimal lhs;
  var lhs;
  //--int reqdig;
  var reqdig;
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  //--byte usel[];
  var usel;
  //--int usellen;
  var usellen;
  //--byte user[];
  var user;
  //--int userlen;
  var userlen;
  //--int newlen=0;
  var newlen=0;
  //--int tlen=0;
  var tlen=0;
  //--int mult=0;
  var mult=0;
  //--byte t[]=null;
  var t=null;
  //--int ia=0;
  var ia=0;
  //--int ib=0;
  var ib=0;
  //--int ea=0;
  var ea=0;
  //int eb=0;
  var eb=0;
  //byte ca=0;
  var ca=0;
  //--byte cb=0;
  var cb=0;
  /* determine requested digits and form */
  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  lhs=this; // name for clarity and proxy

  /* Quick exit for add floating 0 */
  // plus() will optimize to return same object if possible
  if (lhs.ind==0)
   if (set.form!=MathContext.prototype.PLAIN)
    return rhs.plus(set);
  if (rhs.ind==0)
   if (set.form!=MathContext.prototype.PLAIN)
    return lhs.plus(set);

  /* Prepare numbers (round, unless unlimited precision) */
  reqdig=set.digits; // local copy (heavily used)
  if (reqdig>0)
   {
    if (lhs.mant.length>reqdig)
     lhs=this.clone(lhs).round(set);
    if (rhs.mant.length>reqdig)
     rhs=this.clone(rhs).round(set);
   // [we could reuse the new LHS for result in this case]
   }

  res=new BigDecimal(); // build result here

  /* Now see how much we have to pad or truncate lhs or rhs in order
     to align the numbers.  If one number is much larger than the
     other, then the smaller cannot affect the answer [but we may
     still need to pad with up to DIGITS trailing zeros]. */
  // Note sign may be 0 if digits (reqdig) is 0
  // usel and user will be the byte arrays passed to the adder; we'll
  // use them on all paths except quick exits
  usel=lhs.mant;
  usellen=lhs.mant.length;
  user=rhs.mant;
  userlen=rhs.mant.length;
  {padder:do{/*select*/
  if (lhs.exp==rhs.exp)
   {/* no padding needed */
    // This is the most common, and fastest, path
    res.exp=lhs.exp;
   }
  else if (lhs.exp>rhs.exp)
   { // need to pad lhs and/or truncate rhs
    newlen=(usellen+lhs.exp)-rhs.exp;
    /* If, after pad, lhs would be longer than rhs by digits+1 or
       more (and digits>0) then rhs cannot affect answer, so we only
       need to pad up to a length of DIGITS+1. */
    if (newlen>=((userlen+reqdig)+1))
     if (reqdig>0)
      {
       // LHS is sufficient
       res.mant=usel;
       res.exp=lhs.exp;
       res.ind=lhs.ind;
       if (usellen<reqdig)
        { // need 0 padding
         res.mant=this.extend(lhs.mant,reqdig);
         res.exp=res.exp-((reqdig-usellen));
        }
       return res.finish(set,false);
      }
    // RHS may affect result
    res.exp=rhs.exp; // expected final exponent
    if (newlen>(reqdig+1))
     if (reqdig>0)
      {
       // LHS will be max; RHS truncated
       tlen=(newlen-reqdig)-1; // truncation length
       userlen=userlen-tlen;
       res.exp=res.exp+tlen;
       newlen=reqdig+1;
      }
    if (newlen>usellen)
     usellen=newlen; // need to pad LHS
   }
  else{ // need to pad rhs and/or truncate lhs
   newlen=(userlen+rhs.exp)-lhs.exp;
   if (newlen>=((usellen+reqdig)+1))
    if (reqdig>0)
     {
      // RHS is sufficient
      res.mant=user;
      res.exp=rhs.exp;
      res.ind=rhs.ind;
      if (userlen<reqdig)
       { // need 0 padding
        res.mant=this.extend(rhs.mant,reqdig);
        res.exp=res.exp-((reqdig-userlen));
       }
      return res.finish(set,false);
     }
   // LHS may affect result
   res.exp=lhs.exp; // expected final exponent
   if (newlen>(reqdig+1))
    if (reqdig>0)
     {
      // RHS will be max; LHS truncated
      tlen=(newlen-reqdig)-1; // truncation length
      usellen=usellen-tlen;
      res.exp=res.exp+tlen;
      newlen=reqdig+1;
     }
   if (newlen>userlen)
    userlen=newlen; // need to pad RHS
  }
  }while(false);}/*padder*/

  /* OK, we have aligned mantissas.  Now add or subtract. */
  // 1998.06.27 Sign may now be 0 [e.g., 0.000] .. treat as positive
  // 1999.05.27 Allow for 00 on lhs [is not larger than 2 on rhs]
  // 1999.07.10 Allow for 00 on rhs [is not larger than 2 on rhs]
  if (lhs.ind==this.iszero)
   res.ind=this.ispos;
  else
   res.ind=lhs.ind; // likely sign, all paths
  if (((lhs.ind==this.isneg)?1:0)==((rhs.ind==this.isneg)?1:0))  // same sign, 0 non-negative
   mult=1;
  else
   {signdiff:do{ // different signs, so subtraction is needed
    mult=-1; // will cause subtract
    /* Before we can subtract we must determine which is the larger,
       as our add/subtract routine only handles non-negative results
       so we may need to swap the operands. */
    {swaptest:do{/*select*/
    if (rhs.ind==this.iszero)
     {} // original A bigger
    else if ((usellen<userlen)||(lhs.ind==this.iszero))
     { // original B bigger
      t=usel;
      usel=user;
      user=t; // swap
      tlen=usellen;
      usellen=userlen;
      userlen=tlen; // ..
      res.ind=-res.ind; // and set sign
     }
    else if (usellen>userlen)
     {} // original A bigger
    else{
     {/* logical lengths the same */ // need compare
      /* may still need to swap: compare the strings */
      ia=0;
      ib=0;
      ea=usel.length-1;
      eb=user.length-1;
      {compare:for(;;){
       if (ia<=ea)
        ca=usel[ia];
       else
        {
         if (ib>eb)
          {/* identical */
           if (set.form!=MathContext.prototype.PLAIN)
            return this.ZERO;
           // [if PLAIN we must do the subtract, in case of 0.000 results]
           break compare;
          }
         ca=0;
        }
       if (ib<=eb)
        cb=user[ib];
       else
        cb=0;
       if (ca!=cb)
        {
         if (ca<cb)
          {/* swap needed */
           t=usel;
           usel=user;
           user=t; // swap
           tlen=usellen;
           usellen=userlen;
           userlen=tlen; // ..
           res.ind=-res.ind;
          }
         break compare;
        }
       /* mantissas the same, so far */
       ia++;
       ib++;
       }
      }/*compare*/
     } // lengths the same
    }
    }while(false);}/*swaptest*/
   }while(false);}/*signdiff*/

  /* here, A is > B if subtracting */
  // add [A+B*1] or subtract [A+(B*-1)]
  res.mant=this.byteaddsub(usel,usellen,user,userlen,mult,false);
  // [reuse possible only after chop; accounting makes not worthwhile]

  // Finish() rounds before stripping leading 0's, then sets form, etc.
  return res.finish(set,false);
  }

 /**
  * Compares this <code>BigDecimal</code> to another, using unlimited
  * precision.
  * <p>
  * The same as {@link #compareTo(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @return     An <code>int</code> whose value is -1, 0, or 1 as
  *             <code>this</code> is numerically less than, equal to,
  *             or greater than <code>rhs</code>.
  * @see    #compareTo(Object)
  * @stable ICU 2.0
  */

 //--public int compareTo(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.compareTo(rhs,plainMC);
 //-- }

 /**
  * Compares this <code>BigDecimal</code> to another.
  * <p>
  * Implements numeric comparison,
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns a result of type <code>int</code>.
  * <p>
  * The result will be:
  * <table cellpadding=2><tr>
  * <td align=right><b>-1</b></td>
  * <td>if the current object is less than the first parameter</td>
  * </tr><tr>
  * <td align=right><b>0</b></td>
  * <td>if the current object is equal to the first parameter</td>
  * </tr><tr>
  * <td align=right><b>1</b></td>
  * <td>if the current object is greater than the first parameter.</td>
  * </tr></table>
  * <p>
  * A {@link #compareTo(Object)} method is also provided.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     An <code>int</code> whose value is -1, 0, or 1 as
  *             <code>this</code> is numerically less than, equal to,
  *             or greater than <code>rhs</code>.
  * @see    #compareTo(Object)
  * @stable ICU 2.0
  */

 //public int compareTo(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function compareTo() {
  var set;
  if (compareTo.arguments.length == 2)
   {
    set = compareTo.arguments[1];
   }
  else if (compareTo.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "compareTo(): " + compareTo.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = compareTo.arguments[0];
  //--int thislength=0;
  var thislength=0;
  //--int i=0;
  var i=0;
  //--com.ibm.icu.math.BigDecimal newrhs;
  var newrhs;
  // rhs=null will raise NullPointerException, as per Comparable interface
  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  // [add will recheck in slowpath cases .. but would report -rhs]
  if ((this.ind==rhs.ind)&&(this.exp==rhs.exp))
   {
    /* sign & exponent the same [very common] */
    thislength=this.mant.length;
    if (thislength<rhs.mant.length)
     return -this.ind;
    if (thislength>rhs.mant.length)
     return this.ind;
    /* lengths are the same; we can do a straight mantissa compare
       unless maybe rounding [rounding is very unusual] */
    if ((thislength<=set.digits)||(set.digits==0))
     {
      {var $6=thislength;i=0;i:for(;$6>0;$6--,i++){
       if (this.mant[i]<rhs.mant[i])
        return -this.ind;
       if (this.mant[i]>rhs.mant[i])
        return this.ind;
       }
      }/*i*/
      return 0; // identical
     }
   /* drop through for full comparison */
   }
  else
   {
    /* More fastpaths possible */
    if (this.ind<rhs.ind)
     return -1;
    if (this.ind>rhs.ind)
     return 1;
   }
  /* carry out a subtract to make the comparison */
  newrhs=this.clone(rhs); // safe copy
  newrhs.ind=-newrhs.ind; // prepare to subtract
  return this.add(newrhs,set).ind; // add, and return sign of result
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this/rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #divide(BigDecimal, int)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the rounding mode is {@link MathContext#ROUND_HALF_UP}.
  *
  * The length of the decimal part (the scale) of the result will be
  * the same as the scale of the current object, if the latter were
  * formatted without exponential notation.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the division.
  * @return     A plain <code>BigDecimal</code> whose value is
  *             <code>this/rhs</code>, using fixed point arithmetic.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.dodivide('D',rhs,plainMC,-1);
 //-- }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this/rhs</code>, using fixed point arithmetic and a
  * rounding mode.
  * <p>
  * The same as {@link #divide(BigDecimal, int, int)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the second parameter is <code>this.scale()</code>, and
  * the third is <code>round</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will
  * therefore be the same as the scale of the current object, if the
  * latter were formatted without exponential notation.
  * <p>
  * @param  rhs   The <code>BigDecimal</code> for the right hand side of
  *               the division.
  * @param  round The <code>int</code> rounding mode to be used for
  *               the division (see the {@link MathContext} class).
  * @return       A plain <code>BigDecimal</code> whose value is
  *               <code>this/rhs</code>, using fixed point arithmetic
  *               and the specified rounding mode.
  * @throws IllegalArgumentException if <code>round</code> is not a
  *               valid rounding mode.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @throws ArithmeticException if <code>round</code> is {@link
  *               MathContext#ROUND_UNNECESSARY} and
  *               <code>this.scale()</code> is insufficient to
  *               represent the result exactly.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,int round){
 //-- com.ibm.icu.math.MathContext set;
 //-- set=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN,false,round); // [checks round, too]
 //-- return this.dodivide('D',rhs,set,-1); // take scale from LHS
 //-- }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this/rhs</code>, using fixed point arithmetic and a
  * given scale and rounding mode.
  * <p>
  * The same as {@link #divide(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * <code>new MathContext(0, MathContext.PLAIN, false, round)</code>,
  * except that the length of the decimal part (the scale) to be used
  * for the result is explicit rather than being taken from
  * <code>this</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * the same as the scale of the current object, if the latter were
  * formatted without exponential notation.
  * <p>
  * @param  rhs   The <code>BigDecimal</code> for the right hand side of
  *               the division.
  * @param  scale The <code>int</code> scale to be used for the result.
  * @param  round The <code>int</code> rounding mode to be used for
  *               the division (see the {@link MathContext} class).
  * @return       A plain <code>BigDecimal</code> whose value is
  *               <code>this/rhs</code>, using fixed point arithmetic
  *               and the specified rounding mode.
  * @throws IllegalArgumentException if <code>round</code> is not a
  *               valid rounding mode.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @throws ArithmeticException if <code>scale</code> is negative.
  * @throws ArithmeticException if <code>round</code> is {@link
  *               MathContext#ROUND_UNNECESSARY} and <code>scale</code>
  *               is insufficient to represent the result exactly.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,int scale,int round){
 //-- com.ibm.icu.math.MathContext set;
 //-- if (scale<0)
 //--  throw new java.lang.ArithmeticException("Negative scale:"+" "+scale);
 //-- set=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN,false,round); // [checks round]
 //-- return this.dodivide('D',rhs,set,scale);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>this/rhs</code>.
  * <p>
  * Implements the division (<b><code>/</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the division.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this/rhs</code>.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function divide() {
  var set;
  var scale = -1;
  if (divide.arguments.length == 2)
   {
    if (typeof divide.arguments[1] == 'number')
     {
      set=new MathContext(0,MathContext.prototype.PLAIN,false,divide.arguments[1]); // [checks round, too]
     }
    else
     {
      set = divide.arguments[1];
     }
   }
  else if (divide.arguments.length == 3)
   {
    scale = divide.arguments[1];
    if (scale<0)
     throw "divide(): Negative scale: "+scale;
    set=new MathContext(0,MathContext.prototype.PLAIN,false,divide.arguments[2]); // [checks round]
   }
  else if (divide.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "divide(): " + divide.arguments.length + " arguments given; expected between 1 and 3";
   }
  var rhs = divide.arguments[0];
  return this.dodivide('D',rhs,set,scale);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is the integer
  * part of <code>this/rhs</code>.
  * <p>
  * The same as {@link #divideInteger(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the integer division.
  * @return     A <code>BigDecimal</code> whose value is the integer
  *             part of <code>this/rhs</code>.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divideInteger(com.ibm.icu.math.BigDecimal rhs){
 //-- // scale 0 to drop .000 when plain
 //-- return this.dodivide('I',rhs,plainMC,0);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is the integer
  * part of <code>this/rhs</code>.
  * <p>
  * Implements the integer division operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the integer division.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is the integer
  *             part of <code>this/rhs</code>.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @throws ArithmeticException if the result will not fit in the
  *             number of digits specified for the context.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal divideInteger(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function divideInteger() {
  var set;
  if (divideInteger.arguments.length == 2)
   {
    set = divideInteger.arguments[1];
   }
  else if (divideInteger.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "divideInteger(): " + divideInteger.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = divideInteger.arguments[0];
  // scale 0 to drop .000 when plain
  return this.dodivide('I',rhs,set,0);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * the maximum of <code>this</code> and <code>rhs</code>.
  * <p>
  * The same as {@link #max(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @return     A <code>BigDecimal</code> whose value is
  *             the maximum of <code>this</code> and <code>rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal max(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.max(rhs,plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is
  * the maximum of <code>this</code> and <code>rhs</code>.
  * <p>
  * Returns the larger of the current object and the first parameter.
  * <p>
  * If calling the {@link #compareTo(BigDecimal, MathContext)} method
  * with the same parameters would return <code>1</code> or
  * <code>0</code>, then the result of calling the
  * {@link #plus(MathContext)} method on the current object (using the
  * same <code>MathContext</code> parameter) is returned.
  * Otherwise, the result of calling the {@link #plus(MathContext)}
  * method on the first parameter object (using the same
  * <code>MathContext</code> parameter) is returned.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             the maximum of <code>this</code> and <code>rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal max(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function max() {
  var set;
  if (max.arguments.length == 2)
   {
    set = max.arguments[1];
   }
  else if (max.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "max(): " + max.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = max.arguments[0];
  if ((this.compareTo(rhs,set))>=0)
   return this.plus(set);
  else
   return rhs.plus(set);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * the minimum of <code>this</code> and <code>rhs</code>.
  * <p>
  * The same as {@link #min(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @return     A <code>BigDecimal</code> whose value is
  *             the minimum of <code>this</code> and <code>rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal min(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.min(rhs,plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is
  * the minimum of <code>this</code> and <code>rhs</code>.
  * <p>
  * Returns the smaller of the current object and the first parameter.
  * <p>
  * If calling the {@link #compareTo(BigDecimal, MathContext)} method
  * with the same parameters would return <code>-1</code> or
  * <code>0</code>, then the result of calling the
  * {@link #plus(MathContext)} method on the current object (using the
  * same <code>MathContext</code> parameter) is returned.
  * Otherwise, the result of calling the {@link #plus(MathContext)}
  * method on the first parameter object (using the same
  * <code>MathContext</code> parameter) is returned.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the comparison.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             the minimum of <code>this</code> and <code>rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal min(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function min() {
  var set;
  if (min.arguments.length == 2)
   {
    set = min.arguments[1];
   }
  else if (min.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "min(): " + min.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = min.arguments[0];
  if ((this.compareTo(rhs,set))<=0)
   return this.plus(set);
  else
   return rhs.plus(set);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this*rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #add(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * the sum of the scales of the operands, if they were formatted
  * without exponential notation.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the multiplication.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this*rhs</code>, using fixed point arithmetic.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal multiply(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.multiply(rhs,plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>this*rhs</code>.
  * <p>
  * Implements the multiplication (<b><code>*</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the multiplication.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this*rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal multiply(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function multiply() {
  var set;
  if (multiply.arguments.length == 2)
   {
    set = multiply.arguments[1];
   }
  else if (multiply.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "multiply(): " + multiply.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = multiply.arguments[0];
  //--com.ibm.icu.math.BigDecimal lhs;
  var lhs;
  //--int padding;
  var padding;
  //--int reqdig;
  var reqdig;
  //--byte multer[]=null;
  var multer=null;
  //--byte multand[]=null;
  var multand=null;
  //--int multandlen;
  var multandlen;
  //--int acclen=0;
  var acclen=0;
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  //--byte acc[];
  var acc;
  //--int n=0;
  var n=0;
  //--byte mult=0;
  var mult=0;
  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  lhs=this; // name for clarity and proxy

  /* Prepare numbers (truncate, unless unlimited precision) */
  padding=0; // trailing 0's to add
  reqdig=set.digits; // local copy
  if (reqdig>0)
   {
    if (lhs.mant.length>reqdig)
     lhs=this.clone(lhs).round(set);
    if (rhs.mant.length>reqdig)
     rhs=this.clone(rhs).round(set);
   // [we could reuse the new LHS for result in this case]
   }
  else
   {/* unlimited */
    // fixed point arithmetic will want every trailing 0; we add these
    // after the calculation rather than before, for speed.
    if (lhs.exp>0)
     padding=padding+lhs.exp;
    if (rhs.exp>0)
     padding=padding+rhs.exp;
   }

  // For best speed, as in DMSRCN, we use the shorter number as the
  // multiplier and the longer as the multiplicand.
  // 1999.12.22: We used to special case when the result would fit in
  //             a long, but with Java 1.3 this gave no advantage.
  if (lhs.mant.length<rhs.mant.length)
   {
    multer=lhs.mant;
    multand=rhs.mant;
   }
  else
   {
    multer=rhs.mant;
    multand=lhs.mant;
   }

  /* Calculate how long result byte array will be */
  multandlen=(multer.length+multand.length)-1; // effective length
  // optimize for 75% of the cases where a carry is expected...
  if ((multer[0]*multand[0])>9)
   acclen=multandlen+1;
  else
   acclen=multandlen;

  /* Now the main long multiplication loop */
  res=new BigDecimal(); // where we'll build result
  acc=this.createArrayWithZeros(acclen); // accumulator, all zeros
  // 1998.07.01: calculate from left to right so that accumulator goes
  // to likely final length on first addition; this avoids a one-digit
  // extension (and object allocation) each time around the loop.
  // Initial number therefore has virtual zeros added to right.
  {var $7=multer.length;n=0;n:for(;$7>0;$7--,n++){
   mult=multer[n];
   if (mult!=0)
    { // [optimization]
     // accumulate [accumulator is reusable array]
     acc=this.byteaddsub(acc,acc.length,multand,multandlen,mult,true);
    }
   // divide multiplicand by 10 for next digit to right
   multandlen--; // 'virtual length'
   }
  }/*n*/

  res.ind=lhs.ind*rhs.ind; // final sign
  res.exp=(lhs.exp+rhs.exp)-padding; // final exponent
  // [overflow is checked by finish]

  /* add trailing zeros to the result, if necessary */
  if (padding==0)
   res.mant=acc;
  else
   res.mant=this.extend(acc,acc.length+padding); // add trailing 0s
  return res.finish(set,false);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>-this</code>.
  * <p>
  * The same as {@link #negate(MathContext)}, where the context is
  * <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * be <code>this.scale()</code>
  *
  *
  * @return A <code>BigDecimal</code> whose value is
  *         <code>-this</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal negate(){
 //-- return this.negate(plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>-this</code>.
  * <p>
  * Implements the negation (Prefix <b><code>-</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return A <code>BigDecimal</code> whose value is
  *         <code>-this</code>.
  * @stable ICU 2.0
  */

 //public com.ibm.icu.math.BigDecimal negate(com.ibm.icu.math.MathContext set){
 function negate() {
  var set;
  if (negate.arguments.length == 1)
   {
    set = negate.arguments[0];
   }
  else if (negate.arguments.length == 0)
   {
    set = this.plainMC;
   }
  else
   {
    throw "negate(): " + negate.arguments.length + " arguments given; expected 0 or 1";
   }
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  // Originally called minus(), changed to matched Java precedents
  // This simply clones, flips the sign, and possibly rounds
  if (set.lostDigits)
   this.checkdigits(null,set.digits);
  res=this.clone(this); // safe copy
  res.ind=-res.ind;
  return res.finish(set,false);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>+this</code>.
  * Note that <code>this</code> is not necessarily a
  * plain <code>BigDecimal</code>, but the result will always be.
  * <p>
  * The same as {@link #plus(MathContext)}, where the context is
  * <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * be <code>this.scale()</code>
  *
  * @return A <code>BigDecimal</code> whose value is
  *         <code>+this</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal plus(){
 //-- return this.plus(plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is
  * <code>+this</code>.
  * <p>
  * Implements the plus (Prefix <b><code>+</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  * <p>
  * This method is useful for rounding or otherwise applying a context
  * to a decimal value.
  *
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return A <code>BigDecimal</code> whose value is
  *         <code>+this</code>.
  * @stable ICU 2.0
  */

 //public com.ibm.icu.math.BigDecimal plus(com.ibm.icu.math.MathContext set){
 function plus() {
  var set;
  if (plus.arguments.length == 1)
   {
    set = plus.arguments[0];
   }
  else if (plus.arguments.length == 0)
   {
    set = this.plainMC;
   }
  else
   {
    throw "plus(): " + plus.arguments.length + " arguments given; expected 0 or 1";
   }
  // This clones and forces the result to the new settings
  // May return same object
  if (set.lostDigits)
   this.checkdigits(null,set.digits);
  // Optimization: returns same object for some common cases
  if (set.form==MathContext.prototype.PLAIN)
   if (this.form==MathContext.prototype.PLAIN)
    {
     if (this.mant.length<=set.digits)
      return this;
     if (set.digits==0)
      return this;
    }
  return this.clone(this).finish(set,false);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this**rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #pow(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The parameter is the power to which the <code>this</code> will be
  * raised; it must be in the range 0 through 999999999, and must
  * have a decimal part of zero.  Note that these restrictions may be
  * removed in the future, so they should not be used as a test for a
  * whole number.
  * <p>
  * In addition, the power must not be negative, as no
  * <code>MathContext</code> is used and so the result would then
  * always be 0.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the operation (the power).
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this**rhs</code>, using fixed point arithmetic.
  * @throws ArithmeticException if <code>rhs</code> is out of range or
  *             is not a whole number.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal pow(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.pow(rhs,plainMC);
 //-- }
 // The name for this method is inherited from the precedent set by the
 // BigInteger and Math classes.

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>this**rhs</code>.
  * <p>
  * Implements the power (<b><code>**</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  * <p>
  * The first parameter is the power to which the <code>this</code>
  * will be raised; it must be in the range -999999999 through
  * 999999999, and must have a decimal part of zero.  Note that these
  * restrictions may be removed in the future, so they should not be
  * used as a test for a whole number.
  * <p>
  * If the <code>digits</code> setting of the <code>MathContext</code>
  * parameter is 0, the power must be zero or positive.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the operation (the power).
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this**rhs</code>.
  * @throws ArithmeticException if <code>rhs</code> is out of range or
  *             is not a whole number.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal pow(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function pow() {
  var set;
  if (pow.arguments.length == 2)
   {
    set = pow.arguments[1];
   }
  else if (pow.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "pow(): " + pow.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = pow.arguments[0];
  //--int n;
  var n;
  //--com.ibm.icu.math.BigDecimal lhs;
  var lhs;
  //--int reqdig;
  var reqdig;
  //-- int workdigits=0;
  var workdigits=0;
  //--int L=0;
  var L=0;
  //--com.ibm.icu.math.MathContext workset;
  var workset;
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  //--boolean seenbit;
  var seenbit;
  //--int i=0;
  var i=0;
  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  n=rhs.intcheck(this.MinArg,this.MaxArg); // check RHS by the rules
  lhs=this; // clarified name

  reqdig=set.digits; // local copy (heavily used)
  if (reqdig==0)
   {
    if (rhs.ind==this.isneg)
     //--throw new java.lang.ArithmeticException("Negative power:"+" "+rhs.toString());
     throw "pow(): Negative power: " + rhs.toString();
    workdigits=0;
   }
  else
   {/* non-0 digits */
    if ((rhs.mant.length+rhs.exp)>reqdig)
     //--throw new java.lang.ArithmeticException("Too many digits:"+" "+rhs.toString());
     throw "pow(): Too many digits: " + rhs.toString();

    /* Round the lhs to DIGITS if need be */
    if (lhs.mant.length>reqdig)
     lhs=this.clone(lhs).round(set);

    /* L for precision calculation [see ANSI X3.274-1996] */
    L=rhs.mant.length+rhs.exp; // length without decimal zeros/exp
    workdigits=(reqdig+L)+1; // calculate the working DIGITS
   }

  /* Create a copy of set for working settings */
  // Note: no need to check for lostDigits again.
  // 1999.07.17 Note: this construction must follow RHS check
  workset=new MathContext(workdigits,set.form,false,set.roundingMode);

  res=this.ONE; // accumulator
  if (n==0)
   return res; // x**0 == 1
  if (n<0)
   n=-n; // [rhs.ind records the sign]
  seenbit=false; // set once we've seen a 1-bit
  {i=1;i:for(;;i++){ // for each bit [top bit ignored]
   //n=n+n; // shift left 1 bit
   n<<=1;
   if (n<0)
    { // top bit is set
     seenbit=true; // OK, we're off
     res=res.multiply(lhs,workset); // acc=acc*x
    }
   if (i==31)
    break i; // that was the last bit
   if ((!seenbit))
    continue i; // we don't have to square 1
   res=res.multiply(res,workset); // acc=acc*acc [square]
   }
  }/*i*/ // 32 bits
  if (rhs.ind<0)  // was a **-n [hence digits>0]
   res=this.ONE.divide(res,workset); // .. so acc=1/acc
  return res.finish(set,true); // round and strip [original digits]
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * the remainder of <code>this/rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #remainder(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * This is not the modulo operator -- the result may be negative.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the remainder operation.
  * @return     A <code>BigDecimal</code> whose value is the remainder
  *             of <code>this/rhs</code>, using fixed point arithmetic.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal remainder(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.dodivide('R',rhs,plainMC,-1);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is the remainder of
  * <code>this/rhs</code>.
  * <p>
  * Implements the remainder operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  * <p>
  * This is not the modulo operator -- the result may be negative.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the remainder operation.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is the remainder
  *             of <code>this+rhs</code>.
  * @throws ArithmeticException if <code>rhs</code> is zero.
  * @throws ArithmeticException if the integer part of the result will
  *             not fit in the number of digits specified for the
  *             context.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal remainder(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function remainder() {
  var set;
  if (remainder.arguments.length == 2)
   {
    set = remainder.arguments[1];
   }
  else if (remainder.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "remainder(): " + remainder.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = remainder.arguments[0];
  return this.dodivide('R',rhs,set,-1);
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose value is
  * <code>this-rhs</code>, using fixed point arithmetic.
  * <p>
  * The same as {@link #subtract(BigDecimal, MathContext)},
  * where the <code>BigDecimal</code> is <code>rhs</code>,
  * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
  * <p>
  * The length of the decimal part (the scale) of the result will be
  * the maximum of the scales of the two operands.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the subtraction.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this-rhs</code>, using fixed point arithmetic.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal subtract(com.ibm.icu.math.BigDecimal rhs){
 //-- return this.subtract(rhs,plainMC);
 //-- }

 /**
  * Returns a <code>BigDecimal</code> whose value is <code>this-rhs</code>.
  * <p>
  * Implements the subtraction (<b><code>-</code></b>) operator
  * (as defined in the decimal documentation, see {@link BigDecimal
  * class header}),
  * and returns the result as a <code>BigDecimal</code> object.
  *
  * @param  rhs The <code>BigDecimal</code> for the right hand side of
  *             the subtraction.
  * @param  set The <code>MathContext</code> arithmetic settings.
  * @return     A <code>BigDecimal</code> whose value is
  *             <code>this-rhs</code>.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal subtract(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
 function subtract() {
  var set;
  if (subtract.arguments.length == 2)
   {
    set = subtract.arguments[1];
   }
  else if (subtract.arguments.length == 1)
   {
    set = this.plainMC;
   }
  else
   {
    throw "subtract(): " + subtract.arguments.length + " arguments given; expected 1 or 2";
   }
  var rhs = subtract.arguments[0];
  //--com.ibm.icu.math.BigDecimal newrhs;
  var newrhs;
  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  // [add will recheck .. but would report -rhs]
  /* carry out the subtraction */
  // we could fastpath -0, but it is too rare.
  newrhs=this.clone(rhs); // safe copy
  newrhs.ind=-newrhs.ind; // prepare to subtract
  return this.add(newrhs,set); // arithmetic
  }

 /* ---------------------------------------------------------------- */
 /* Other methods                                                    */
 /* ---------------------------------------------------------------- */

 /**
  * Converts this <code>BigDecimal</code> to a <code>byte</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part or is
  * out of the possible range for a <code>byte</code> (8-bit signed
  * integer) result then an <code>ArithmeticException</code> is thrown.
  *
  * @return A <code>byte</code> equal in value to <code>this</code>.
  * @throws ArithmeticException if <code>this</code> has a non-zero
  *                 decimal part, or will not fit in a <code>byte</code>.
  * @stable ICU 2.0
  */

 //--public byte byteValueExact(){
 //-- int num;
 //-- num=this.intValueExact(); // will check decimal part too
 //-- if ((num>127)|(num<(-128)))
 //--  throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
 //-- return (byte)num;
 //-- }

 /**
  * Compares this <code>BigDecimal</code> with the value of the parameter.
  * <p>
  * If the parameter is <code>null</code>, or is not an instance of the
  * <code>BigDecimal</code> type, an exception is thrown.
  * Otherwise, the parameter is cast to type <code>BigDecimal</code>
  * and the result of the {@link #compareTo(BigDecimal)} method,
  * using the cast parameter, is returned.
  * <p>
  * The {@link #compareTo(BigDecimal, MathContext)} method should be
  * used when a <code>MathContext</code> is needed for the comparison.
  *
  * @param  rhs The <code>Object</code> for the right hand side of
  *             the comparison.
  * @return     An <code>int</code> whose value is -1, 0, or 1 as
  *             <code>this</code> is numerically less than, equal to,
  *             or greater than <code>rhs</code>.
  * @throws ClassCastException if <code>rhs</code> cannot be cast to
  *                 a <code>BigDecimal</code> object.
  * @see    #compareTo(BigDecimal)
  * @stable ICU 2.0
  */

 //--public int compareTo(java.lang.Object rhsobj){
 //-- // the cast in the next line will raise ClassCastException if necessary
 //-- return compareTo((com.ibm.icu.math.BigDecimal)rhsobj,plainMC);
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to a <code>double</code>.
  * If the <code>BigDecimal</code> is out of the possible range for a
  * <code>double</code> (64-bit signed floating point) result then an
  * <code>ArithmeticException</code> is thrown.
  * <p>
  * The double produced is identical to result of expressing the
  * <code>BigDecimal</code> as a <code>String</code> and then
  * converting it using the <code>Double(String)</code> constructor;
  * this can result in values of <code>Double.NEGATIVE_INFINITY</code>
  * or <code>Double.POSITIVE_INFINITY</code>.
  *
  * @return A <code>double</code> corresponding to <code>this</code>.
  * @stable ICU 2.0
  */

 //--public double doubleValue(){
 //-- // We go via a String [as does BigDecimal in JDK 1.2]
 //-- // Next line could possibly raise NumberFormatException
 //-- return java.lang.Double.valueOf(this.toString()).doubleValue();
 //-- }

 /**
  * Compares this <code>BigDecimal</code> with <code>rhs</code> for
  * equality.
  * <p>
  * If the parameter is <code>null</code>, or is not an instance of the
  * BigDecimal type, or is not exactly equal to the current
  * <code>BigDecimal</code> object, then <i>false</i> is returned.
  * Otherwise, <i>true</i> is returned.
  * <p>
  * "Exactly equal", here, means that the <code>String</code>
  * representations of the <code>BigDecimal</code> numbers are
  * identical (they have the same characters in the same sequence).
  * <p>
  * The {@link #compareTo(BigDecimal, MathContext)} method should be
  * used for more general comparisons.
  * @param  rhs The <code>Object</code> for the right hand side of
  *             the comparison.
  * @return     A <code>boolean</code> whose value <i>true</i> if and
  *             only if the operands have identical string representations.
  * @throws ClassCastException if <code>rhs</code> cannot be cast to
  *                 a <code>BigDecimal</code> object.
  * @stable ICU 2.0
  * @see    #compareTo(Object)
  * @see    #compareTo(BigDecimal)
  * @see    #compareTo(BigDecimal, MathContext)
  */

 //--public boolean equals(java.lang.Object obj){
 function equals(obj) {
  //--com.ibm.icu.math.BigDecimal rhs;
  var rhs;
  //--int i=0;
  var i=0;
  //--char lca[]=null;
  var lca=null;
  //--char rca[]=null;
  var rca=null;
  // We are equal iff toString of both are exactly the same
  if (obj==null)
   return false; // not equal
  if ((!(((obj instanceof BigDecimal)))))
   return false; // not a decimal
  rhs=obj; // cast; we know it will work
  if (this.ind!=rhs.ind)
   return false; // different signs never match
  if (((this.mant.length==rhs.mant.length)&&(this.exp==rhs.exp))&&(this.form==rhs.form))

   { // mantissas say all
    // here with equal-length byte arrays to compare
    {var $8=this.mant.length;i=0;i:for(;$8>0;$8--,i++){
     if (this.mant[i]!=rhs.mant[i])
      return false;
     }
    }/*i*/
   }
  else
   { // need proper layout
    lca=this.layout(); // layout to character array
    rca=rhs.layout();
    if (lca.length!=rca.length)
     return false; // mismatch
    // here with equal-length character arrays to compare
    {var $9=lca.length;i=0;i:for(;$9>0;$9--,i++){
     if (lca[i]!=rca[i])
      return false;
     }
    }/*i*/
   }
  return true; // arrays have identical content
  }

 /**
  * Converts this <code>BigDecimal</code> to a <code>float</code>.
  * If the <code>BigDecimal</code> is out of the possible range for a
  * <code>float</code> (32-bit signed floating point) result then an
  * <code>ArithmeticException</code> is thrown.
  * <p>
  * The float produced is identical to result of expressing the
  * <code>BigDecimal</code> as a <code>String</code> and then
  * converting it using the <code>Float(String)</code> constructor;
  * this can result in values of <code>Float.NEGATIVE_INFINITY</code>
  * or <code>Float.POSITIVE_INFINITY</code>.
  *
  * @return A <code>float</code> corresponding to <code>this</code>.
  * @stable ICU 2.0
  */

 //--public float floatValue(){
 //-- return java.lang.Float.valueOf(this.toString()).floatValue();
 //-- }

 /**
  * Returns the <code>String</code> representation of this
  * <code>BigDecimal</code>, modified by layout parameters.
  * <p>
  * <i>This method is provided as a primitive for use by more
  * sophisticated classes, such as <code>DecimalFormat</code>, that
  * can apply locale-sensitive editing of the result.  The level of
  * formatting that it provides is a necessary part of the BigDecimal
  * class as it is sensitive to and must follow the calculation and
  * rounding rules for BigDecimal arithmetic.
  * However, if the function is provided elsewhere, it may be removed
  * from this class. </i>
  * <p>
  * The parameters, for both forms of the <code>format</code> method
  * are all of type <code>int</code>.
  * A value of -1 for any parameter indicates that the default action
  * or value for that parameter should be used.
  * <p>
  * The parameters, <code>before</code> and <code>after</code>,
  * specify the number of characters to be used for the integer part
  * and decimal part of the result respectively.  Exponential notation
  * is not used. If either parameter is -1 (which indicates the default
  * action), the number of characters used will be exactly as many as
  * are needed for that part.
  * <p>
  * <code>before</code> must be a positive number; if it is larger than
  * is needed to contain the integer part, that part is padded on the
  * left with blanks to the requested length. If <code>before</code> is
  * not large enough to contain the integer part of the number
  * (including the sign, for negative numbers) an exception is thrown.
  * <p>
  * <code>after</code> must be a non-negative number; if it is not the
  * same size as the decimal part of the number, the number will be
  * rounded (or extended with zeros) to fit.  Specifying 0 for
  * <code>after</code> will cause the number to be rounded to an
  * integer (that is, it will have no decimal part or decimal point).
  * The rounding method will be the default,
  * <code>MathContext.ROUND_HALF_UP</code>.
  * <p>
  * Other rounding methods, and the use of exponential notation, can
  * be selected by using {@link #format(int,int,int,int,int,int)}.
  * Using the two-parameter form of the method has exactly the same
  * effect as using the six-parameter form with the final four
  * parameters all being -1.
  *
  * @param  before The <code>int</code> specifying the number of places
  *                before the decimal point.  Use -1 for 'as many as
  *                are needed'.
  * @param  after  The <code>int</code> specifying the number of places
  *                after the decimal point.  Use -1 for 'as many as are
  *                needed'.
  * @return        A <code>String</code> representing this
  *                <code>BigDecimal</code>, laid out according to the
  *                specified parameters
  * @throws ArithmeticException if the number cannot be laid out as
  *                requested.
  * @throws IllegalArgumentException if a parameter is out of range.
  * @stable ICU 2.0
  * @see    #toString
  * @see    #toCharArray
  */

 //--public java.lang.String format(int before,int after){
 //-- return format(before,after,-1,-1,com.ibm.icu.math.MathContext.SCIENTIFIC,ROUND_HALF_UP);
 //-- }

 /**
  * Returns the <code>String</code> representation of this
  * <code>BigDecimal</code>, modified by layout parameters and allowing
  * exponential notation.
  * <p>
  * <i>This method is provided as a primitive for use by more
  * sophisticated classes, such as <code>DecimalFormat</code>, that
  * can apply locale-sensitive editing of the result.  The level of
  * formatting that it provides is a necessary part of the BigDecimal
  * class as it is sensitive to and must follow the calculation and
  * rounding rules for BigDecimal arithmetic.
  * However, if the function is provided elsewhere, it may be removed
  * from this class. </i>
  * <p>
  * The parameters are all of type <code>int</code>.
  * A value of -1 for any parameter indicates that the default action
  * or value for that parameter should be used.
  * <p>
  * The first two parameters (<code>before</code> and
  * <code>after</code>) specify the number of characters to be used for
  * the integer part and decimal part of the result respectively, as
  * defined for {@link #format(int,int)}.
  * If either of these is -1 (which indicates the default action), the
  * number of characters used will be exactly as many as are needed for
  * that part.
  * <p>
  * The remaining parameters control the use of exponential notation
  * and rounding.  Three (<code>explaces</code>, <code>exdigits</code>,
  * and <code>exform</code>) control the exponent part of the result.
  * As before, the default action for any of these parameters may be
  * selected by using the value -1.
  * <p>
  * <code>explaces</code> must be a positive number; it sets the number
  * of places (digits after the sign of the exponent) to be used for
  * any exponent part, the default (when <code>explaces</code> is -1)
  * being to use as many as are needed.
  * If <code>explaces</code> is not -1, space is always reserved for
  * an exponent; if one is not needed (for example, if the exponent
  * will be 0) then <code>explaces</code>+2 blanks are appended to the
  * result.
  * <!-- (This preserves vertical alignment of similarly formatted
  *       numbers in a monospace font.) -->
  * If <code>explaces</code> is not -1 and is not large enough to
  * contain the exponent, an exception is thrown.
  * <p>
  * <code>exdigits</code> sets the trigger point for use of exponential
  * notation. If, before any rounding, the number of places needed
  * before the decimal point exceeds <code>exdigits</code>, or if the
  * absolute value of the result is less than <code>0.000001</code>,
  * then exponential form will be used, provided that
  * <code>exdigits</code> was specified.
  * When <code>exdigits</code> is -1, exponential notation will never
  * be used. If 0 is specified for <code>exdigits</code>, exponential
  * notation is always used unless the exponent would be 0.
  * <p>
  * <code>exform</code> sets the form for exponential notation (if
  * needed).
  * It  may be either {@link MathContext#SCIENTIFIC} or
  * {@link MathContext#ENGINEERING}.
  * If the latter, engineering, form is requested, up to three digits
  * (plus sign, if negative) may be needed for the integer part of the
  * result (<code>before</code>).  Otherwise, only one digit (plus
  * sign, if negative) is needed.
  * <p>
  * Finally, the sixth argument, <code>exround</code>, selects the
  * rounding algorithm to be used, and must be one of the values
  * indicated by a public constant in the {@link MathContext} class
  * whose name starts with <code>ROUND_</code>.
  * The default (<code>ROUND_HALF_UP</code>) may also be selected by
  * using the value -1, as before.
  * <p>
  * The special value <code>MathContext.ROUND_UNNECESSARY</code> may be
  * used to detect whether non-zero digits are discarded -- if
  * <code>exround</code> has this value than if non-zero digits would
  * be discarded (rounded) during formatting then an
  * <code>ArithmeticException</code> is thrown.
  *
  * @param  before   The <code>int</code> specifying the number of places
  *                  before the decimal point.
  *                  Use -1 for 'as many as are needed'.
  * @param  after    The <code>int</code> specifying the number of places
  *                  after the decimal point.
  *                  Use -1 for 'as many as are needed'.
  * @param  explaces The <code>int</code> specifying the number of places
  *                  to be used for any exponent.
  *                  Use -1 for 'as many as are needed'.
  * @param  exdigits The <code>int</code> specifying the trigger
  *                  (digits before the decimal point) which if
  *                  exceeded causes exponential notation to be used.
  *                  Use 0 to force exponential notation.
  *                  Use -1 to force plain notation (no exponential
  *                  notation).
  * @param  exform   The <code>int</code> specifying the form of
  *                  exponential notation to be used
  *                  ({@link MathContext#SCIENTIFIC} or
  *                  {@link MathContext#ENGINEERING}).
  * @param  exround  The <code>int</code> specifying the rounding mode
  *                  to use.
  *                  Use -1 for the default, {@link MathContext#ROUND_HALF_UP}.
  * @return          A <code>String</code> representing this
  *                  <code>BigDecimal</code>, laid out according to the
  *                  specified parameters
  * @throws ArithmeticException if the number cannot be laid out as
  *                  requested.
  * @throws IllegalArgumentException if a parameter is out of range.
  * @see    #toString
  * @see    #toCharArray
  * @stable ICU 2.0
  */

 //--public java.lang.String format(int before,int after,int explaces,int exdigits,int exformint,int exround){
 function format() {
  var explaces;
  var exdigits;
  var exformint;
  var exround;
  if (format.arguments.length == 6)
   {
    explaces = format.arguments[2];
    exdigits = format.arguments[3];
    exformint = format.arguments[4];
    exround = format.arguments[5];
   }
  else if (format.arguments.length == 2)
   {
    explaces = -1;
    exdigits = -1;
    exformint = MathContext.prototype.SCIENTIFIC;
    exround = this.ROUND_HALF_UP;
   }
  else
   {
    throw "format(): " + format.arguments.length + " arguments given; expected 2 or 6";
   }
  var before = format.arguments[0];
  var after = format.arguments[1];
  //--com.ibm.icu.math.BigDecimal num;
  var num;
  //--int mag=0;
  var mag=0;
  //--int thisafter=0;
  var thisafter=0;
  //--int lead=0;
  var lead=0;
  //--byte newmant[]=null;
  var newmant=null;
  //--int chop=0;
  var chop=0;
  //--int need=0;
  var need=0;
  //--int oldexp=0;
  var oldexp=0;
  //--char a[];
  var a;
  //--int p=0;
  var p=0;
  //--char newa[]=null;
  var newa=null;
  //--int i=0;
  var i=0;
  //--int places=0;
  var places=0;


  /* Check arguments */
  if ((before<(-1))||(before==0))
   this.badarg("format",1,before);
  if (after<(-1))
   this.badarg("format",2,after);
  if ((explaces<(-1))||(explaces==0))
   this.badarg("format",3,explaces);
  if (exdigits<(-1))
   this.badarg("format",4,exdigits);
  {/*select*/
  if (exformint==MathContext.prototype.SCIENTIFIC)
   {}
  else if (exformint==MathContext.prototype.ENGINEERING)
   {}
  else if (exformint==(-1))
   exformint=MathContext.prototype.SCIENTIFIC;
   // note PLAIN isn't allowed
  else{
   this.badarg("format",5,exformint);
  }
  }
  // checking the rounding mode is done by trying to construct a
  // MathContext object with that mode; it will fail if bad
  if (exround!=this.ROUND_HALF_UP)
   {try{ // if non-default...
    if (exround==(-1))
     exround=this.ROUND_HALF_UP;
    else
     new MathContext(9,MathContext.prototype.SCIENTIFIC,false,exround);
   }
   catch ($10){
    this.badarg("format",6,exround);
   }}

  num=this.clone(this); // make private copy

  /* Here:
     num       is BigDecimal to format
     before    is places before point [>0]
     after     is places after point  [>=0]
     explaces  is exponent places     [>0]
     exdigits  is exponent digits     [>=0]
     exformint is exponent form       [one of two]
     exround   is rounding mode       [one of eight]
     'before' through 'exdigits' are -1 if not specified
  */

  /* determine form */
  {setform:do{/*select*/
  if (exdigits==(-1))
   num.form=MathContext.prototype.PLAIN;
  else if (num.ind==this.iszero)
   num.form=MathContext.prototype.PLAIN;
  else{
   // determine whether triggers
   mag=num.exp+num.mant.length;
   if (mag>exdigits)
    num.form=exformint;
   else
    if (mag<(-5))
     num.form=exformint;
    else
     num.form=MathContext.prototype.PLAIN;
  }
  }while(false);}/*setform*/

  /* If 'after' was specified then we may need to adjust the
     mantissa.  This is a little tricky, as we must conform to the
     rules of exponential layout if necessary (e.g., we cannot end up
     with 10.0 if scientific). */
  if (after>=0)
   {setafter:for(;;){
    // calculate the current after-length
    {/*select*/
    if (num.form==MathContext.prototype.PLAIN)
     thisafter=-num.exp; // has decimal part
    else if (num.form==MathContext.prototype.SCIENTIFIC)
     thisafter=num.mant.length-1;
    else{ // engineering
     lead=(((num.exp+num.mant.length)-1))%3; // exponent to use
     if (lead<0)
      lead=3+lead; // negative exponent case
     lead++; // number of leading digits
     if (lead>=num.mant.length)
      thisafter=0;
     else
      thisafter=num.mant.length-lead;
    }
    }
    if (thisafter==after)
     break setafter; // we're in luck
    if (thisafter<after)
     { // need added trailing zeros
      // [thisafter can be negative]
      newmant=this.extend(num.mant,(num.mant.length+after)-thisafter);
      num.mant=newmant;
      num.exp=num.exp-((after-thisafter)); // adjust exponent
      if (num.exp<this.MinExp)
       throw "format(): Exponent Overflow: " + num.exp;
      break setafter;
     }
    // We have too many digits after the decimal point; this could
    // cause a carry, which could change the mantissa...
    // Watch out for implied leading zeros in PLAIN case
    chop=thisafter-after; // digits to lop [is >0]
    if (chop>num.mant.length)
     { // all digits go, no chance of carry
      // carry on with zero
      num.mant=this.ZERO.mant;
      num.ind=this.iszero;
      num.exp=0;
      continue setafter; // recheck: we may need trailing zeros
     }
    // we have a digit to inspect from existing mantissa
    // round the number as required
    need=num.mant.length-chop; // digits to end up with [may be 0]
    oldexp=num.exp; // save old exponent
    num.round(need,exround);
    // if the exponent grew by more than the digits we chopped, then
    // we must have had a carry, so will need to recheck the layout
    if ((num.exp-oldexp)==chop)
     break setafter; // number did not have carry
    // mantissa got extended .. so go around and check again
    }
   }/*setafter*/

  a=num.layout(); // lay out, with exponent if required, etc.

  /* Here we have laid-out number in 'a' */
  // now apply 'before' and 'explaces' as needed
  if (before>0)
   {
    // look for '.' or 'E'
    {var $11=a.length;p=0;p:for(;$11>0;$11--,p++){
     if (a[p]=='.')
      break p;
     if (a[p]=='E')
      break p;
     }
    }/*p*/
    // p is now offset of '.', 'E', or character after end of array
    // that is, the current length of before part
    if (p>before)
     this.badarg("format",1,before); // won't fit
    if (p<before)
     { // need leading blanks
      newa=new Array((a.length+before)-p);
      {var $12=before-p;i=0;i:for(;$12>0;$12--,i++){
       newa[i]=' ';
       }
      }/*i*/
      //--java.lang.System.arraycopy((java.lang.Object)a,0,(java.lang.Object)newa,i,a.length);
      this.arraycopy(a,0,newa,i,a.length);
      a=newa;
     }
   // [if p=before then it's just the right length]
   }

  if (explaces>0)
   {
    // look for 'E' [cannot be at offset 0]
    {var $13=a.length-1;p=a.length-1;p:for(;$13>0;$13--,p--){
     if (a[p]=='E')
      break p;
     }
    }/*p*/
    // p is now offset of 'E', or 0
    if (p==0)
     { // no E part; add trailing blanks
      newa=new Array((a.length+explaces)+2);
      //--java.lang.System.arraycopy((java.lang.Object)a,0,(java.lang.Object)newa,0,a.length);
      this.arraycopy(a,0,newa,0,a.length);
      {var $14=explaces+2;i=a.length;i:for(;$14>0;$14--,i++){
       newa[i]=' ';
       }
      }/*i*/
      a=newa;
     }
    else
     {/* found E */ // may need to insert zeros
      places=(a.length-p)-2; // number so far
      if (places>explaces)
       this.badarg("format",3,explaces);
      if (places<explaces)
       { // need to insert zeros
        newa=new Array((a.length+explaces)-places);
        //--java.lang.System.arraycopy((java.lang.Object)a,0,(java.lang.Object)newa,0,p+2); // through E and sign
        this.arraycopy(a,0,newa,0,p+2);
        {var $15=explaces-places;i=p+2;i:for(;$15>0;$15--,i++){
         newa[i]='0';
         }
        }/*i*/
        //--java.lang.System.arraycopy((java.lang.Object)a,p+2,(java.lang.Object)newa,i,places); // remainder of exponent
        this.arraycopy(a,p+2,newa,i,places);
        a=newa;
       }
     // [if places=explaces then it's just the right length]
     }
   }
  return a.join("");
  }

 /**
  * Returns the hashcode for this <code>BigDecimal</code>.
  * This hashcode is suitable for use by the
  * <code>java.util.Hashtable</code> class.
  * <p>
  * Note that two <code>BigDecimal</code> objects are only guaranteed
  * to produce the same hashcode if they are exactly equal (that is,
  * the <code>String</code> representations of the
  * <code>BigDecimal</code> numbers are identical -- they have the same
  * characters in the same sequence).
  *
  * @return An <code>int</code> that is the hashcode for <code>this</code>.
  * @stable ICU 2.0
  */

 //--public int hashCode(){
 //-- // Maybe calculate ourselves, later.  If so, note that there can be
 //-- // more than one internal representation for a given toString() result.
 //-- return this.toString().hashCode();
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to an <code>int</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part it is
  * discarded. If the <code>BigDecimal</code> is out of the possible
  * range for an <code>int</code> (32-bit signed integer) result then
  * only the low-order 32 bits are used. (That is, the number may be
  * <i>decapitated</i>.)  To avoid unexpected errors when these
  * conditions occur, use the {@link #intValueExact} method.
  *
  * @return An <code>int</code> converted from <code>this</code>,
  *         truncated and decapitated if necessary.
  * @stable ICU 2.0
  */

 //--public int intValue(){
 //-- return toBigInteger().intValue();
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to an <code>int</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part or is
  * out of the possible range for an <code>int</code> (32-bit signed
  * integer) result then an <code>ArithmeticException</code> is thrown.
  *
  * @return An <code>int</code> equal in value to <code>this</code>.
  * @throws ArithmeticException if <code>this</code> has a non-zero
  *                 decimal part, or will not fit in an
  *                 <code>int</code>.
  * @stable ICU 2.0
  */

 //--public int intValueExact(){
 function intValueExact() {
  //--int lodigit;
  var lodigit;
  //--int useexp=0;
  var useexp=0;
  //--int result;
  var result;
  //--int i=0;
  var i=0;
  //--int topdig=0;
  var topdig=0;
  // This does not use longValueExact() as the latter can be much
  // slower.
  // intcheck (from pow) relies on this to check decimal part
  if (this.ind==this.iszero)
   return 0; // easy, and quite common
  /* test and drop any trailing decimal part */
  lodigit=this.mant.length-1;
  if (this.exp<0)
   {
    lodigit=lodigit+this.exp; // reduces by -(-exp)
    /* all decimal places must be 0 */
    if ((!(this.allzero(this.mant,lodigit+1))))
     throw "intValueExact(): Decimal part non-zero: " + this.toString();
    if (lodigit<0)
     return 0; // -1<this<1
    useexp=0;
   }
  else
   {/* >=0 */
    if ((this.exp+lodigit)>9)  // early exit
     throw "intValueExact(): Conversion overflow: "+this.toString();
    useexp=this.exp;
   }
  /* convert the mantissa to binary, inline for speed */
  result=0;
  {var $16=lodigit+useexp;i=0;i:for(;i<=$16;i++){
   result=result*10;
   if (i<=lodigit)
    result=result+this.mant[i];
   }
  }/*i*/

  /* Now, if the risky length, check for overflow */
  if ((lodigit+useexp)==9)
   {
    // note we cannot just test for -ve result, as overflow can move a
    // zero into the top bit [consider 5555555555]
    topdig=div(result,1000000000); // get top digit, preserving sign
    if (topdig!=this.mant[0])
     { // digit must match and be positive
      // except in the special case ...
      if (result==-2147483648)  // looks like the special
       if (this.ind==this.isneg)  // really was negative
        if (this.mant[0]==2)
         return result; // really had top digit 2
      throw "intValueExact(): Conversion overflow: "+this.toString();
     }
   }

  /* Looks good */
  if (this.ind==this.ispos)
   return result;
  return -result;
  }

 /**
  * Converts this <code>BigDecimal</code> to a <code>long</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part it is
  * discarded. If the <code>BigDecimal</code> is out of the possible
  * range for a <code>long</code> (64-bit signed integer) result then
  * only the low-order 64 bits are used. (That is, the number may be
  * <i>decapitated</i>.)  To avoid unexpected errors when these
  * conditions occur, use the {@link #longValueExact} method.
  *
  * @return A <code>long</code> converted from <code>this</code>,
  *         truncated and decapitated if necessary.
  * @stable ICU 2.0
  */

 //--public long longValue(){
 //-- return toBigInteger().longValue();
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to a <code>long</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part or is
  * out of the possible range for a <code>long</code> (64-bit signed
  * integer) result then an <code>ArithmeticException</code> is thrown.
  *
  * @return A <code>long</code> equal in value to <code>this</code>.
  * @throws ArithmeticException if <code>this</code> has a non-zero
  *                 decimal part, or will not fit in a
  *                 <code>long</code>.
  * @stable ICU 2.0
  */

 //--public long longValueExact(){
 //-- int lodigit;
 //-- int cstart=0;
 //-- int useexp=0;
 //-- long result;
 //-- int i=0;
 //-- long topdig=0;
 //-- // Identical to intValueExact except for result=long, and exp>=20 test
 //-- if (ind==0)
 //--  return 0; // easy, and quite common
 //-- lodigit=mant.length-1; // last included digit
 //-- if (exp<0)
 //--  {
 //--   lodigit=lodigit+exp; // -(-exp)
 //--   /* all decimal places must be 0 */
 //--   if (lodigit<0)
 //--    cstart=0;
 //--   else
 //--    cstart=lodigit+1;
 //--   if ((!(allzero(mant,cstart))))
 //--    throw new java.lang.ArithmeticException("Decimal part non-zero:"+" "+this.toString());
 //--   if (lodigit<0)
 //--    return 0; // -1<this<1
 //--   useexp=0;
 //--  }
 //-- else
 //--  {/* >=0 */
 //--   if ((exp+mant.length)>18)  // early exit
 //--    throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
 //--   useexp=exp;
 //--  }
 //--
 //-- /* convert the mantissa to binary, inline for speed */
 //-- // note that we could safely use the 'test for wrap to negative'
 //-- // algorithm here, but instead we parallel the intValueExact
 //-- // algorithm for ease of checking and maintenance.
 //-- result=(long)0;
 //-- {int $17=lodigit+useexp;i=0;i:for(;i<=$17;i++){
 //--  result=result*10;
 //--  if (i<=lodigit)
 //--   result=result+mant[i];
 //--  }
 //-- }/*i*/
 //--
 //-- /* Now, if the risky length, check for overflow */
 //-- if ((lodigit+useexp)==18)
 //--  {
 //--   topdig=result/1000000000000000000L; // get top digit, preserving sign
 //--   if (topdig!=mant[0])
 //--    { // digit must match and be positive
 //--     // except in the special case ...
 //--     if (result==java.lang.Long.MIN_VALUE)  // looks like the special
 //--      if (ind==isneg)  // really was negative
 //--       if (mant[0]==9)
 //--        return result; // really had top digit 9
 //--     throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
 //--    }
 //--  }
 //--
 //-- /* Looks good */
 //-- if (ind==ispos)
 //--  return result;
 //-- return (long)-result;
 //-- }

 /**
  * Returns a plain <code>BigDecimal</code> whose decimal point has
  * been moved to the left by a specified number of positions.
  * The parameter, <code>n</code>, specifies the number of positions to
  * move the decimal point.
  * That is, if <code>n</code> is 0 or positive, the number returned is
  * given by:
  * <p><code>
  * this.multiply(TEN.pow(new BigDecimal(-n)))
  * </code>
  * <p>
  * <code>n</code> may be negative, in which case the method returns
  * the same result as <code>movePointRight(-n)</code>.
  *
  * @param  n The <code>int</code> specifying the number of places to
  *           move the decimal point leftwards.
  * @return   A <code>BigDecimal</code> derived from
  *           <code>this</code>, with the decimal point moved
  *           <code>n</code> places to the left.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal movePointLeft(int n){
 function movePointLeft(n) {
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  // very little point in optimizing for shift of 0
  res=this.clone(this);
  res.exp=res.exp-n;
  return res.finish(this.plainMC,false); // finish sets form and checks exponent
  }

 /**
  * Returns a plain <code>BigDecimal</code> whose decimal point has
  * been moved to the right by a specified number of positions.
  * The parameter, <code>n</code>, specifies the number of positions to
  * move the decimal point.
  * That is, if <code>n</code> is 0 or positive, the number returned is
  * given by:
  * <p><code>
  * this.multiply(TEN.pow(new BigDecimal(n)))
  * </code>
  * <p>
  * <code>n</code> may be negative, in which case the method returns
  * the same result as <code>movePointLeft(-n)</code>.
  *
  * @param  n The <code>int</code> specifying the number of places to
  *           move the decimal point rightwards.
  * @return   A <code>BigDecimal</code> derived from
  *           <code>this</code>, with the decimal point moved
  *           <code>n</code> places to the right.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal movePointRight(int n){
 function movePointRight(n) {
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  res=this.clone(this);
  res.exp=res.exp+n;
  return res.finish(this.plainMC,false);
  }

 /**
  * Returns the scale of this <code>BigDecimal</code>.
  * Returns a non-negative <code>int</code> which is the scale of the
  * number. The scale is the number of digits in the decimal part of
  * the number if the number were formatted without exponential
  * notation.
  *
  * @return An <code>int</code> whose value is the scale of this
  *         <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public int scale(){
 function scale() {
  if (this.exp>=0)
   return 0; // scale can never be negative
  return -this.exp;
  }

 /**
  * Returns a plain <code>BigDecimal</code> with a given scale.
  * <p>
  * If the given scale (which must be zero or positive) is the same as
  * or greater than the length of the decimal part (the scale) of this
  * <code>BigDecimal</code> then trailing zeros will be added to the
  * decimal part as necessary.
  * <p>
  * If the given scale is less than the length of the decimal part (the
  * scale) of this <code>BigDecimal</code> then trailing digits
  * will be removed, and in this case an
  * <code>ArithmeticException</code> is thrown if any discarded digits
  * are non-zero.
  * <p>
  * The same as {@link #setScale(int, int)}, where the first parameter
  * is the scale, and the second is
  * <code>MathContext.ROUND_UNNECESSARY</code>.
  *
  * @param  scale The <code>int</code> specifying the scale of the
  *               resulting <code>BigDecimal</code>.
  * @return       A plain <code>BigDecimal</code> with the given scale.
  * @throws ArithmeticException if <code>scale</code> is negative.
  * @throws ArithmeticException if reducing scale would discard
  *               non-zero digits.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal setScale(int scale){
 //-- return setScale(scale,ROUND_UNNECESSARY);
 //-- }

 /**
  * Returns a plain <code>BigDecimal</code> with a given scale.
  * <p>
  * If the given scale (which must be zero or positive) is the same as
  * or greater than the length of the decimal part (the scale) of this
  * <code>BigDecimal</code> then trailing zeros will be added to the
  * decimal part as necessary.
  * <p>
  * If the given scale is less than the length of the decimal part (the
  * scale) of this <code>BigDecimal</code> then trailing digits
  * will be removed, and the rounding mode given by the second
  * parameter is used to determine if the remaining digits are
  * affected by a carry.
  * In this case, an <code>IllegalArgumentException</code> is thrown if
  * <code>round</code> is not a valid rounding mode.
  * <p>
  * If <code>round</code> is <code>MathContext.ROUND_UNNECESSARY</code>,
  * an <code>ArithmeticException</code> is thrown if any discarded
  * digits are non-zero.
  *
  * @param  scale The <code>int</code> specifying the scale of the
  *               resulting <code>BigDecimal</code>.
  * @param  round The <code>int</code> rounding mode to be used for
  *               the division (see the {@link MathContext} class).
  * @return       A plain <code>BigDecimal</code> with the given scale.
  * @throws IllegalArgumentException if <code>round</code> is not a
  *               valid rounding mode.
  * @throws ArithmeticException if <code>scale</code> is negative.
  * @throws ArithmeticException if <code>round</code> is
  *               <code>MathContext.ROUND_UNNECESSARY</code>, and
  *               reducing scale would discard non-zero digits.
  * @stable ICU 2.0
  */

 //--public com.ibm.icu.math.BigDecimal setScale(int scale,int round){
 function setScale() {
  var round;
  if (setScale.arguments.length == 2)
   {
    round = setScale.arguments[1];
   }
  else if (setScale.arguments.length == 1)
   {
    round = this.ROUND_UNNECESSARY;
   }
  else
   {
    throw "setScale(): " + setScale.arguments.length + " given; expected 1 or 2";
   }
  var scale = setScale.arguments[0];
  //--int ourscale;
  var ourscale;
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  //--int padding=0;
  var padding=0;
  //--int newlen=0;
  var newlen=0;
  // at present this naughtily only checks the round value if it is
  // needed (used), for speed
  ourscale=this.scale();
  if (ourscale==scale)  // already correct scale
   if (this.form==MathContext.prototype.PLAIN)  // .. and form
    return this;
  res=this.clone(this); // need copy
  if (ourscale<=scale)
   { // simply zero-padding/changing form
    // if ourscale is 0 we may have lots of 0s to add
    if (ourscale==0)
     padding=res.exp+scale;
    else
     padding=scale-ourscale;
    res.mant=this.extend(res.mant,res.mant.length+padding);
    res.exp=-scale; // as requested
   }
  else
   {/* ourscale>scale: shortening, probably */
    if (scale<0)
     //--throw new java.lang.ArithmeticException("Negative scale:"+" "+scale);
     throw "setScale(): Negative scale: " + scale;
    // [round() will raise exception if invalid round]
    newlen=res.mant.length-((ourscale-scale)); // [<=0 is OK]
    res=res.round(newlen,round); // round to required length
    // This could have shifted left if round (say) 0.9->1[.0]
    // Repair if so by adding a zero and reducing exponent
    if (res.exp!=(-scale))
     {
      res.mant=this.extend(res.mant,res.mant.length+1);
      res.exp=res.exp-1;
     }
   }
  res.form=MathContext.prototype.PLAIN; // by definition
  return res;
  }

 /**
  * Converts this <code>BigDecimal</code> to a <code>short</code>.
  * If the <code>BigDecimal</code> has a non-zero decimal part or is
  * out of the possible range for a <code>short</code> (16-bit signed
  * integer) result then an <code>ArithmeticException</code> is thrown.
  *
  * @return A <code>short</code> equal in value to <code>this</code>.
  * @throws ArithmeticException if <code>this</code> has a non-zero
  *                 decimal part, or will not fit in a
  *                 <code>short</code>.
  * @stable ICU 2.0
  */

 //--public short shortValueExact(){
 //-- int num;
 //-- num=this.intValueExact(); // will check decimal part too
 //-- if ((num>32767)|(num<(-32768)))
 //--  throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
 //-- return (short)num;
 //-- }

 /**
  * Returns the sign of this <code>BigDecimal</code>, as an
  * <code>int</code>.
  * This returns the <i>signum</i> function value that represents the
  * sign of this <code>BigDecimal</code>.
  * That is, -1 if the <code>BigDecimal</code> is negative, 0 if it is
  * numerically equal to zero, or 1 if it is positive.
  *
  * @return An <code>int</code> which is -1 if the
  *         <code>BigDecimal</code> is negative, 0 if it is
  *         numerically equal to zero, or 1 if it is positive.
  * @stable ICU 2.0
  */

 //--public int signum(){
 function signum() {
  return this.ind; // [note this assumes values for ind.]
  }

 /**
  * Converts this <code>BigDecimal</code> to a
  * <code>java.math.BigDecimal</code>.
  * <p>
  * This is an exact conversion; the result is the same as if the
  * <code>BigDecimal</code> were formatted as a plain number without
  * any rounding or exponent and then the
  * <code>java.math.BigDecimal(java.lang.String)</code> constructor
  * were used to construct the result.
  * <p>
  * <i>(Note: this method is provided only in the
  * <code>com.ibm.icu.math</code> version of the BigDecimal class.
  * It would not be present in a <code>java.math</code> version.)</i>
  *
  * @return The <code>java.math.BigDecimal</code> equal in value
  *         to this <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public java.math.BigDecimal toBigDecimal(){
 //-- return new java.math.BigDecimal(this.unscaledValue(),this.scale());
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to a
  * <code>java.math.BigInteger</code>.
  * <p>
  * Any decimal part is truncated (discarded).
  * If an exception is desired should the decimal part be non-zero,
  * use {@link #toBigIntegerExact()}.
  *
  * @return The <code>java.math.BigInteger</code> equal in value
  *         to the integer part of this <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public java.math.BigInteger toBigInteger(){
 //-- com.ibm.icu.math.BigDecimal res=null;
 //-- int newlen=0;
 //-- byte newmant[]=null;
 //-- {/*select*/
 //-- if ((exp>=0)&(form==com.ibm.icu.math.MathContext.PLAIN))
 //--  res=this; // can layout simply
 //-- else if (exp>=0)
 //--  {
 //--   res=clone(this); // safe copy
 //--   res.form=(byte)com.ibm.icu.math.MathContext.PLAIN; // .. and request PLAIN
 //--  }
 //-- else{
 //--  { // exp<0; scale to be truncated
 //--   // we could use divideInteger, but we may as well be quicker
 //--   if (((int)-this.exp)>=this.mant.length)
 //--    res=ZERO; // all blows away
 //--   else
 //--    {
 //--     res=clone(this); // safe copy
 //--     newlen=res.mant.length+res.exp;
 //--     newmant=new byte[newlen]; // [shorter]
 //--     java.lang.System.arraycopy((java.lang.Object)res.mant,0,(java.lang.Object)newmant,0,newlen);
 //--     res.mant=newmant;
 //--     res.form=(byte)com.ibm.icu.math.MathContext.PLAIN;
 //--     res.exp=0;
 //--    }
 //--  }
 //-- }
 //-- }
 //-- return new BigInteger(new java.lang.String(res.layout()));
 //-- }

 /**
  * Converts this <code>BigDecimal</code> to a
  * <code>java.math.BigInteger</code>.
  * <p>
  * An exception is thrown if the decimal part (if any) is non-zero.
  *
  * @return The <code>java.math.BigInteger</code> equal in value
  *         to the integer part of this <code>BigDecimal</code>.
  * @throws ArithmeticException if <code>this</code> has a non-zero
  *         decimal part.
  * @stable ICU 2.0
  */

 //--public java.math.BigInteger toBigIntegerExact(){
 //-- /* test any trailing decimal part */
 //-- if (exp<0)
 //--  { // possible decimal part
 //--   /* all decimal places must be 0; note exp<0 */
 //--   if ((!(allzero(mant,mant.length+exp))))
 //--    throw new java.lang.ArithmeticException("Decimal part non-zero:"+" "+this.toString());
 //--  }
 //-- return toBigInteger();
 //-- }

 /**
  * Returns the <code>BigDecimal</code> as a character array.
  * The result of this method is the same as using the
  * sequence <code>toString().toCharArray()</code>, but avoids creating
  * the intermediate <code>String</code> and <code>char[]</code>
  * objects.
  *
  * @return The <code>char[]</code> array corresponding to this
  *         <code>BigDecimal</code>.
  * @stable ICU 2.0
  */

 //--public char[] toCharArray(){
 //-- return layout();
 //-- }

 /**
  * Returns the <code>BigDecimal</code> as a <code>String</code>.
  * This returns a <code>String</code> that exactly represents this
  * <code>BigDecimal</code>, as defined in the decimal documentation
  * (see {@link BigDecimal class header}).
  * <p>
  * By definition, using the {@link #BigDecimal(String)} constructor
  * on the result <code>String</code> will create a
  * <code>BigDecimal</code> that is exactly equal to the original
  * <code>BigDecimal</code>.
  *
  * @return The <code>String</code> exactly corresponding to this
  *         <code>BigDecimal</code>.
  * @see    #format(int, int)
  * @see    #format(int, int, int, int, int, int)
  * @see    #toCharArray()
  * @stable ICU 2.0
  */

 //--public java.lang.String toString(){
 function toString() {
  return this.layout().join("");
  }

 /**
  * Returns the number as a <code>BigInteger</code> after removing the
  * scale.
  * That is, the number is expressed as a plain number, any decimal
  * point is then removed (retaining the digits of any decimal part),
  * and the result is then converted to a <code>BigInteger</code>.
  *
  * @return The <code>java.math.BigInteger</code> equal in value to
  *         this <code>BigDecimal</code> multiplied by ten to the
  *         power of <code>this.scale()</code>.
  * @stable ICU 2.0
  */

 //--public java.math.BigInteger unscaledValue(){
 //-- com.ibm.icu.math.BigDecimal res=null;
 //-- if (exp>=0)
 //--  res=this;
 //-- else
 //--  {
 //--   res=clone(this); // safe copy
 //--   res.exp=0; // drop scale
 //--  }
 //-- return res.toBigInteger();
 //-- }

 /**
  * Translates a <code>double</code> to a <code>BigDecimal</code>.
  * <p>
  * Returns a <code>BigDecimal</code> which is the decimal
  * representation of the 64-bit signed binary floating point
  * parameter. If the parameter is infinite, or is not a number (NaN),
  * a <code>NumberFormatException</code> is thrown.
  * <p>
  * The number is constructed as though <code>num</code> had been
  * converted to a <code>String</code> using the
  * <code>Double.toString()</code> method and the
  * {@link #BigDecimal(java.lang.String)} constructor had then been used.
  * This is typically not an exact conversion.
  *
  * @param  dub The <code>double</code> to be translated.
  * @return     The <code>BigDecimal</code> equal in value to
  *             <code>dub</code>.
  * @throws NumberFormatException if the parameter is infinite or
  *             not a number.
  * @stable ICU 2.0
  */



 /**
  * Translates a <code>long</code> to a <code>BigDecimal</code>.
  * That is, returns a plain <code>BigDecimal</code> whose value is
  * equal to the given <code>long</code>.
  *
  * @param  lint The <code>long</code> to be translated.
  * @return      The <code>BigDecimal</code> equal in value to
  *              <code>lint</code>.
  * @stable ICU 2.0
  */



 /**
  * Translates a <code>long</code> to a <code>BigDecimal</code> with a
  * given scale.
  * That is, returns a plain <code>BigDecimal</code> whose unscaled
  * value is equal to the given <code>long</code>, adjusted by the
  * second parameter, <code>scale</code>.
  * <p>
  * The result is given by:
  * <p><code>
  * (new BigDecimal(lint)).divide(TEN.pow(new BigDecimal(scale)))
  * </code>
  * <p>
  * A <code>NumberFormatException</code> is thrown if <code>scale</code>
  * is negative.
  *
  * @param  lint  The <code>long</code> to be translated.
  * @param  scale The <code>int</code> scale to be applied.
  * @return       The <code>BigDecimal</code> equal in value to
  *               <code>lint</code>.
  * @throws NumberFormatException if the scale is negative.
  * @stable ICU 2.0
  */





 /* <sgml> Return char array value of a BigDecimal (conversion from
       BigDecimal to laid-out canonical char array).
    <p>The mantissa will either already have been rounded (following an
       operation) or will be of length appropriate (in the case of
       construction from an int, for example).
    <p>We must not alter the mantissa, here.
    <p>'form' describes whether we are to use exponential notation (and
       if so, which), or if we are to lay out as a plain/pure numeric.
    </sgml> */

 //--private char[] layout(){
 function layout() {
  //--char cmant[];
  var cmant;
  //--int i=0;
  var i=0;
  //--java.lang.StringBuffer sb=null;
  var sb=null;
  //--int euse=0;
  var euse=0;
  //--int sig=0;
  var sig=0;
  //--char csign=0;
  var csign=0;
  //--char rec[]=null;
  var rec=null;
  //--int needsign;
  var needsign;
  //--int mag;
  var mag;
  //--int len=0;
  var len=0;
  cmant=new Array(this.mant.length); // copy byte[] to a char[]
  {var $18=this.mant.length;i=0;i:for(;$18>0;$18--,i++){
   cmant[i]=this.mant[i]+'';
   }
  }/*i*/

  if (this.form!=MathContext.prototype.PLAIN)
   {/* exponential notation needed */
    //--sb=new java.lang.StringBuffer(cmant.length+15); // -x.xxxE+999999999
    sb="";
    if (this.ind==this.isneg)
     sb += '-';
    euse=(this.exp+cmant.length)-1; // exponent to use
    /* setup sig=significant digits and copy to result */
    if (this.form==MathContext.prototype.SCIENTIFIC)
     { // [default]
      sb += cmant[0]; // significant character
      if (cmant.length>1)  // have decimal part
       //--sb.append('.').append(cmant,1,cmant.length-1);
       sb += '.';
       sb += cmant.slice(1).join("");
     }
    else
     {engineering:do{
      sig=euse%3; // common
      if (sig<0)
       sig=3+sig; // negative exponent
      euse=euse-sig;
      sig++;
      if (sig>=cmant.length)
       { // zero padding may be needed
        //--sb.append(cmant,0,cmant.length);
        sb += cmant.join("");
        {var $19=sig-cmant.length;for(;$19>0;$19--){
         sb += '0';
         }
        }
       }
      else
       { // decimal point needed
        //--sb.append(cmant,0,sig).append('.').append(cmant,sig,cmant.length-sig);
        sb += cmant.slice(0,sig).join("");
        sb += '.';
        sb += cmant.slice(sig).join("");
       }
     }while(false);}/*engineering*/
    if (euse!=0)
     {
      if (euse<0)
       {
        csign='-';
        euse=-euse;
       }
      else
       csign='+';
      //--sb.append('E').append(csign).append(euse);
      sb += 'E';
      sb += csign;
      sb += euse;
     }
    //--rec=new Array(sb.length);
    //--Utility.getChars(sb, 0,sb.length(),rec,0);
    //--return rec;
    return sb.split("");
   }

  /* Here for non-exponential (plain) notation */
  if (this.exp==0)
   {/* easy */
    if (this.ind>=0)
     return cmant; // non-negative integer
    rec=new Array(cmant.length+1);
    rec[0]='-';
    //--java.lang.System.arraycopy((java.lang.Object)cmant,0,(java.lang.Object)rec,1,cmant.length);
    this.arraycopy(cmant,0,rec,1,cmant.length);
    return rec;
   }

  /* Need a '.' and/or some zeros */
  needsign=((this.ind==this.isneg)?1:0); // space for sign?  0 or 1

  /* MAG is the position of the point in the mantissa (index of the
     character it follows) */
  mag=this.exp+cmant.length;

  if (mag<1)
   {/* 0.00xxxx form */
    len=(needsign+2)-this.exp; // needsign+2+(-mag)+cmant.length
    rec=new Array(len);
    if (needsign!=0)
     rec[0]='-';
    rec[needsign]='0';
    rec[needsign+1]='.';
    {var $20=-mag;i=needsign+2;i:for(;$20>0;$20--,i++){ // maybe none
     rec[i]='0';
     }
    }/*i*/
    //--java.lang.System.arraycopy((java.lang.Object)cmant,0,(java.lang.Object)rec,(needsign+2)-mag,cmant.length);
    this.arraycopy(cmant,0,rec,(needsign+2)-mag,cmant.length);
    return rec;
   }

  if (mag>cmant.length)
   {/* xxxx0000 form */
    len=needsign+mag;
    rec=new Array(len);
    if (needsign!=0)
     rec[0]='-';
    //--java.lang.System.arraycopy((java.lang.Object)cmant,0,(java.lang.Object)rec,needsign,cmant.length);
    this.arraycopy(cmant,0,rec,needsign,cmant.length);
    {var $21=mag-cmant.length;i=needsign+cmant.length;i:for(;$21>0;$21--,i++){ // never 0
     rec[i]='0';
     }
    }/*i*/
    return rec;
   }

  /* decimal point is in the middle of the mantissa */
  len=(needsign+1)+cmant.length;
  rec=new Array(len);
  if (needsign!=0)
   rec[0]='-';
  //--java.lang.System.arraycopy((java.lang.Object)cmant,0,(java.lang.Object)rec,needsign,mag);
  this.arraycopy(cmant,0,rec,needsign,mag);
  rec[needsign+mag]='.';
  //--java.lang.System.arraycopy((java.lang.Object)cmant,mag,(java.lang.Object)rec,(needsign+mag)+1,cmant.length-mag);
  this.arraycopy(cmant,mag,rec,(needsign+mag)+1,cmant.length-mag);
  return rec;
  }

 /* <sgml> Checks a BigDecimal argument to ensure it's a true integer
       in a given range.
    <p>If OK, returns it as an int. </sgml> */
 // [currently only used by pow]

 //--private int intcheck(int min,int max){
 function intcheck(min, max) {
  //--int i;
  var i;
  i=this.intValueExact(); // [checks for non-0 decimal part]
  // Use same message as though intValueExact failed due to size
  if ((i<min)||(i>max))
   throw "intcheck(): Conversion overflow: "+i;
  return i;
  }

 /* <sgml> Carry out division operations. </sgml> */
 /*
    Arg1 is operation code: D=divide, I=integer divide, R=remainder
    Arg2 is the rhs.
    Arg3 is the context.
    Arg4 is explicit scale iff code='D' or 'I' (-1 if none).

    Underlying algorithm (complications for Remainder function and
    scaled division are omitted for clarity):

      Test for x/0 and then 0/x
      Exp =Exp1 - Exp2
      Exp =Exp +len(var1) -len(var2)
      Sign=Sign1 * Sign2
      Pad accumulator (Var1) to double-length with 0's (pad1)
      Pad Var2 to same length as Var1
      B2B=1st two digits of var2, +1 to allow for roundup
      have=0
      Do until (have=digits+1 OR residue=0)
        if exp<0 then if integer divide/residue then leave
        this_digit=0
        Do forever
           compare numbers
           if <0 then leave inner_loop
           if =0 then (- quick exit without subtract -) do
              this_digit=this_digit+1; output this_digit
              leave outer_loop; end
           Compare lengths of numbers (mantissae):
           If same then CA=first_digit_of_Var1
                   else CA=first_two_digits_of_Var1
           mult=ca*10/b2b   -- Good and safe guess at divisor
           if mult=0 then mult=1
           this_digit=this_digit+mult
           subtract
           end inner_loop
         if have\=0 | this_digit\=0 then do
           output this_digit
           have=have+1; end
         var2=var2/10
         exp=exp-1
         end outer_loop
      exp=exp+1   -- set the proper exponent
      if have=0 then generate answer=0
      Return to FINISHED
      Result defined by MATHV1

    For extended commentary, see DMSRCN.
  */

 //--private com.ibm.icu.math.BigDecimal dodivide(char code,com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set,int scale){
 function dodivide(code, rhs, set, scale) {
  //--com.ibm.icu.math.BigDecimal lhs;
  var lhs;
  //--int reqdig;
  var reqdig;
  //--int newexp;
  var newexp;
  //--com.ibm.icu.math.BigDecimal res;
  var res;
  //--int newlen;
  var newlen;
  //--byte var1[];
  var var1;
  //--int var1len;
  var var1len;
  //--byte var2[];
  var var2;
  //--int var2len;
  var var2len;
  //--int b2b;
  var b2b;
  //--int have;
  var have;
  //--int thisdigit=0;
  var thisdigit=0;
  //--int i=0;
  var i=0;
  //--byte v2=0;
  var v2=0;
  //--int ba=0;
  var ba=0;
  //--int mult=0;
  var mult=0;
  //--int start=0;
  var start=0;
  //--int padding=0;
  var padding=0;
  //--int d=0;
  var d=0;
  //--byte newvar1[]=null;
  var newvar1=null;
  //--byte lasthave=0;
  var lasthave=0;
  //--int actdig=0;
  var actdig=0;
  //--byte newmant[]=null;
  var newmant=null;

  if (set.lostDigits)
   this.checkdigits(rhs,set.digits);
  lhs=this; // name for clarity

  // [note we must have checked lostDigits before the following checks]
  if (rhs.ind==0)
   throw "dodivide(): Divide by 0"; // includes 0/0
  if (lhs.ind==0)
   { // 0/x => 0 [possibly with .0s]
    if (set.form!=MathContext.prototype.PLAIN)
     return this.ZERO;
    if (scale==(-1))
     return lhs;
    return lhs.setScale(scale);
   }

  /* Prepare numbers according to BigDecimal rules */
  reqdig=set.digits; // local copy (heavily used)
  if (reqdig>0)
   {
    if (lhs.mant.length>reqdig)
     lhs=this.clone(lhs).round(set);
    if (rhs.mant.length>reqdig)
     rhs=this.clone(rhs).round(set);
   }
  else
   {/* scaled divide */
    if (scale==(-1))
     scale=lhs.scale();
    // set reqdig to be at least large enough for the computation
    reqdig=lhs.mant.length; // base length
    // next line handles both positive lhs.exp and also scale mismatch
    if (scale!=(-lhs.exp))
     reqdig=(reqdig+scale)+lhs.exp;
    reqdig=(reqdig-((rhs.mant.length-1)))-rhs.exp; // reduce by RHS effect
    if (reqdig<lhs.mant.length)
     reqdig=lhs.mant.length; // clamp
    if (reqdig<rhs.mant.length)
     reqdig=rhs.mant.length; // ..
   }

  /* precalculate exponent */
  newexp=((lhs.exp-rhs.exp)+lhs.mant.length)-rhs.mant.length;
  /* If new exponent -ve, then some quick exits are possible */
  if (newexp<0)
   if (code!='D')
    {
     if (code=='I')
      return this.ZERO; // easy - no integer part
     /* Must be 'R'; remainder is [finished clone of] input value */
     return this.clone(lhs).finish(set,false);
    }

  /* We need slow division */
  res=new BigDecimal(); // where we'll build result
  res.ind=(lhs.ind*rhs.ind); // final sign (for D/I)
  res.exp=newexp; // initial exponent (for D/I)
  res.mant=this.createArrayWithZeros(reqdig+1); // where build the result

  /* Now [virtually pad the mantissae with trailing zeros */
  // Also copy the LHS, which will be our working array
  newlen=(reqdig+reqdig)+1;
  var1=this.extend(lhs.mant,newlen); // always makes longer, so new safe array
  var1len=newlen; // [remaining digits are 0]

  var2=rhs.mant;
  var2len=newlen;

  /* Calculate first two digits of rhs (var2), +1 for later estimations */
  b2b=(var2[0]*10)+1;
  if (var2.length>1)
   b2b=b2b+var2[1];

  /* start the long-division loops */
  have=0;
  {outer:for(;;){
   thisdigit=0;
   /* find the next digit */
   {inner:for(;;){
    if (var1len<var2len)
     break inner; // V1 too low
    if (var1len==var2len)
     { // compare needed
      {compare:do{ // comparison
       {var $22=var1len;i=0;i:for(;$22>0;$22--,i++){
        // var1len is always <= var1.length
        if (i<var2.length)
         v2=var2[i];
        else
         v2=0;
        if (var1[i]<v2)
         break inner; // V1 too low
        if (var1[i]>v2)
         break compare; // OK to subtract
        }
       }/*i*/
       /* reach here if lhs and rhs are identical; subtraction will
          increase digit by one, and the residue will be 0 so we
          are done; leave the loop with residue set to 0 (in case
          code is 'R' or ROUND_UNNECESSARY or a ROUND_HALF_xxxx is
          being checked) */
       thisdigit++;
       res.mant[have]=thisdigit;
       have++;
       var1[0]=0; // residue to 0 [this is all we'll test]
       // var1len=1      -- [optimized out]
       break outer;
      }while(false);}/*compare*/
      /* prepare for subtraction.  Estimate BA (lengths the same) */
      ba=var1[0]; // use only first digit
     } // lengths the same
    else
     {/* lhs longer than rhs */
      /* use first two digits for estimate */
      ba=var1[0]*10;
      if (var1len>1)
       ba=ba+var1[1];
     }
    /* subtraction needed; V1>=V2 */
    mult=div((ba*10),b2b);
    if (mult==0)
     mult=1;
    thisdigit=thisdigit+mult;
    // subtract; var1 reusable
    var1=this.byteaddsub(var1,var1len,var2,var2len,-mult,true);
    if (var1[0]!=0)
     continue inner; // maybe another subtract needed
    /* V1 now probably has leading zeros, remove leading 0's and try
       again. (It could be longer than V2) */
    {var $23=var1len-2;start=0;start:for(;start<=$23;start++){
     if (var1[start]!=0)
      break start;
     var1len--;
     }
    }/*start*/
    if (start==0)
     continue inner;
    // shift left
    //--java.lang.System.arraycopy((java.lang.Object)var1,start,(java.lang.Object)var1,0,var1len);
    this.arraycopy(var1,start,var1,0,var1len);
    }
   }/*inner*/

   /* We have the next digit */
   if ((have!=0)||(thisdigit!=0))
    { // put the digit we got
     res.mant[have]=thisdigit;
     have++;
     if (have==(reqdig+1))
      break outer; // we have all we need
     if (var1[0]==0)
      break outer; // residue now 0
    }
   /* can leave now if a scaled divide and exponent is small enough */
   if (scale>=0)
    if ((-res.exp)>scale)
     break outer;
   /* can leave now if not Divide and no integer part left  */
   if (code!='D')
    if (res.exp<=0)
     break outer;
   res.exp=res.exp-1; // reduce the exponent
   /* to get here, V1 is less than V2, so divide V2 by 10 and go for
      the next digit */
   var2len--;
   }
  }/*outer*/

  /* here when we have finished dividing, for some reason */
  // have is the number of digits we collected in res.mant
  if (have==0)
   have=1; // res.mant[0] is 0; we always want a digit

  if ((code=='I')||(code=='R'))
   {/* check for integer overflow needed */
    if ((have+res.exp)>reqdig)
     throw "dodivide(): Integer overflow";

    if (code=='R')
     {remainder:do{
      /* We were doing Remainder -- return the residue */
      if (res.mant[0]==0)  // no integer part was found
       return this.clone(lhs).finish(set,false); // .. so return lhs, canonical
      if (var1[0]==0)
       return this.ZERO; // simple 0 residue
      res.ind=lhs.ind; // sign is always as LHS
      /* Calculate the exponent by subtracting the number of padding zeros
         we added and adding the original exponent */
      padding=((reqdig+reqdig)+1)-lhs.mant.length;
      res.exp=(res.exp-padding)+lhs.exp;

      /* strip insignificant padding zeros from residue, and create/copy
         the resulting mantissa if need be */
      d=var1len;
      {i=d-1;i:for(;i>=1;i--){if(!((res.exp<lhs.exp)&&(res.exp<rhs.exp)))break;
       if (var1[i]!=0)
        break i;
       d--;
       res.exp=res.exp+1;
       }
      }/*i*/
      if (d<var1.length)
       {/* need to reduce */
        newvar1=new Array(d);
        //--java.lang.System.arraycopy((java.lang.Object)var1,0,(java.lang.Object)newvar1,0,d); // shorten
        this.arraycopy(var1,0,newvar1,0,d);
        var1=newvar1;
       }
      res.mant=var1;
      return res.finish(set,false);
     }while(false);}/*remainder*/
   }

  else
   {/* 'D' -- no overflow check needed */
    // If there was a residue then bump the final digit (iff 0 or 5)
    // so that the residue is visible for ROUND_UP, ROUND_HALF_xxx and
    // ROUND_UNNECESSARY checks (etc.) later.
    // [if we finished early, the residue will be 0]
    if (var1[0]!=0)
     { // residue not 0
      lasthave=res.mant[have-1];
      if (((lasthave%5))==0)
       res.mant[have-1]=(lasthave+1);
     }
   }

  /* Here for Divide or Integer Divide */
  // handle scaled results first ['I' always scale 0, optional for 'D']
  if (scale>=0)
   {scaled:do{
    // say 'scale have res.exp len' scale have res.exp res.mant.length
    if (have!=res.mant.length)
     // already padded with 0's, so just adjust exponent
     res.exp=res.exp-((res.mant.length-have));
    // calculate number of digits we really want [may be 0]
    actdig=res.mant.length-(((-res.exp)-scale));
    res.round(actdig,set.roundingMode); // round to desired length
    // This could have shifted left if round (say) 0.9->1[.0]
    // Repair if so by adding a zero and reducing exponent
    if (res.exp!=(-scale))
     {
      res.mant=this.extend(res.mant,res.mant.length+1);
      res.exp=res.exp-1;
     }
    return res.finish(set,true); // [strip if not PLAIN]
   }while(false);}/*scaled*/

  // reach here only if a non-scaled
  if (have==res.mant.length)
   { // got digits+1 digits
    res.round(set);
    have=reqdig;
   }
  else
   {/* have<=reqdig */
    if (res.mant[0]==0)
     return this.ZERO; // fastpath
    // make the mantissa truly just 'have' long
    // [we could let finish do this, during strip, if we adjusted
    // the exponent; however, truncation avoids the strip loop]
    newmant=new Array(have); // shorten
    //--java.lang.System.arraycopy((java.lang.Object)res.mant,0,(java.lang.Object)newmant,0,have);
    this.arraycopy(res.mant,0,newmant,0,have);
    res.mant=newmant;
   }
  return res.finish(set,true);
  }

 /* <sgml> Report a conversion exception. </sgml> */

 //--private void bad(char s[]){
 function bad(prefix, s) {
  throw prefix + "Not a number: "+s;
  }

 /* <sgml> Report a bad argument to a method. </sgml>
    Arg1 is method name
    Arg2 is argument position
    Arg3 is what was found */

 //--private void badarg(java.lang.String name,int pos,java.lang.String value){
 function badarg(name, pos, value) {
  throw "Bad argument "+pos+" to "+name+": "+value;
  }

 /* <sgml> Extend byte array to given length, padding with 0s.  If no
    extension is required then return the same array. </sgml>

    Arg1 is the source byte array
    Arg2 is the new length (longer)
    */

 //--private static final byte[] extend(byte inarr[],int newlen){
 function extend(inarr, newlen) {
  //--byte newarr[];
  var newarr;
  if (inarr.length==newlen)
   return inarr;
  newarr=createArrayWithZeros(newlen);
  //--java.lang.System.arraycopy((java.lang.Object)inarr,0,(java.lang.Object)newarr,0,inarr.length);
  this.arraycopy(inarr,0,newarr,0,inarr.length);
  // 0 padding is carried out by the JVM on allocation initialization
  return newarr;
  }

 /* <sgml> Add or subtract two >=0 integers in byte arrays
    <p>This routine performs the calculation:
    <pre>
    C=A+(B*M)
    </pre>
    Where M is in the range -9 through +9
    <p>
    If M<0 then A>=B must be true, so the result is always
    non-negative.

    Leading zeros are not removed after a subtraction.  The result is
    either the same length as the longer of A and B, or 1 longer than
    that (if a carry occurred).

    A is not altered unless Arg6 is 1.
    B is never altered.

    Arg1 is A
    Arg2 is A length to use (if longer than A, pad with 0's)
    Arg3 is B
    Arg4 is B length to use (if longer than B, pad with 0's)
    Arg5 is M, the multiplier
    Arg6 is 1 if A can be used to build the result (if it fits)

    This routine is severely performance-critical; *any* change here
    must be measured (timed) to assure no performance degradation.
    */
 // 1996.02.20 -- enhanced version of DMSRCN algorithm (1981)
 // 1997.10.05 -- changed to byte arrays (from char arrays)
 // 1998.07.01 -- changed to allow destructive reuse of LHS
 // 1998.07.01 -- changed to allow virtual lengths for the arrays
 // 1998.12.29 -- use lookaside for digit/carry calculation
 // 1999.08.07 -- avoid multiply when mult=1, and make db an int
 // 1999.12.22 -- special case m=-1, also drop 0 special case

 //--private static final byte[] byteaddsub(byte a[],int avlen,byte b[],int bvlen,int m,boolean reuse){
 function byteaddsub(a, avlen, b, bvlen, m, reuse) {
  //--int alength;
  var alength;
  //--int blength;
  var blength;
  //--int ap;
  var ap;
  //--int bp;
  var bp;
  //--int maxarr;
  var maxarr;
  //--byte reb[];
  var reb;
  //--boolean quickm;
  var quickm;
  //--int digit;
  var digit;
  //--int op=0;
  var op=0;
  //--int dp90=0;
  var dp90=0;
  //--byte newarr[];
  var newarr;
  //--int i=0;
  var i=0;




  // We'll usually be right if we assume no carry
  alength=a.length; // physical lengths
  blength=b.length; // ..
  ap=avlen-1; // -> final (rightmost) digit
  bp=bvlen-1; // ..
  maxarr=bp;
  if (maxarr<ap)
   maxarr=ap;
  reb=null; // result byte array
  if (reuse)
   if ((maxarr+1)==alength)
    reb=a; // OK to reuse A
  if (reb==null){
   reb=this.createArrayWithZeros(maxarr+1); // need new array
   }

  quickm=false; // 1 if no multiply needed
  if (m==1)
   quickm=true; // most common
  else
   if (m==(-1))
    quickm=true; // also common

  digit=0; // digit, with carry or borrow
  {op=maxarr;op:for(;op>=0;op--){
   if (ap>=0)
    {
     if (ap<alength)
      digit=digit+a[ap]; // within A
     ap--;
    }
   if (bp>=0)
    {
     if (bp<blength)
      { // within B
       if (quickm)
        {
         if (m>0)
          digit=digit+b[bp]; // most common
         else
          digit=digit-b[bp]; // also common
        }
       else
        digit=digit+(b[bp]*m);
      }
     bp--;
    }
   /* result so far (digit) could be -90 through 99 */
   if (digit<10)
    if (digit>=0)
     {quick:do{ // 0-9
      reb[op]=digit;
      digit=0; // no carry
      continue op;
     }while(false);}/*quick*/
   dp90=digit+90;
   reb[op]=this.bytedig[dp90]; // this digit
   digit=this.bytecar[dp90]; // carry or borrow
   }
  }/*op*/

  if (digit==0)
   return reb; // no carry
  // following line will become an Assert, later
  // if digit<0 then signal ArithmeticException("internal.error ["digit"]")

  /* We have carry -- need to make space for the extra digit */
  newarr=null;
  if (reuse)
   if ((maxarr+2)==a.length)
    newarr=a; // OK to reuse A
  if (newarr==null)
   newarr=new Array(maxarr+2);
  newarr[0]=digit; // the carried digit ..
  // .. and all the rest [use local loop for short numbers]
  //--if (maxarr<10)
   {var $24=maxarr+1;i=0;i:for(;$24>0;$24--,i++){
    newarr[i+1]=reb[i];
    }
   }/*i*/
  //--else
   //--java.lang.System.arraycopy((java.lang.Object)reb,0,(java.lang.Object)newarr,1,maxarr+1);
  return newarr;
  }

 /* <sgml> Initializer for digit array properties (lookaside). </sgml>
    Returns the digit array, and initializes the carry array. */

 //--private static final byte[] diginit(){
 function diginit() {
  //--byte work[];
  var work;
  //--int op=0;
  var op=0;
  //--int digit=0;
  var digit=0;
  work=new Array((90+99)+1);
  {op=0;op:for(;op<=(90+99);op++){
   digit=op-90;
   if (digit>=0)
    {
     work[op]=(digit%10);
     BigDecimal.prototype.bytecar[op]=(div(digit,10)); // calculate carry
     continue op;
    }
   // borrowing...
   digit=digit+100; // yes, this is right [consider -50]
   work[op]=(digit%10);
   BigDecimal.prototype.bytecar[op]=((div(digit,10))-10); // calculate borrow [NB: - after %]
   }
  }/*op*/
  return work;
  }

 /* <sgml> Create a copy of BigDecimal object for local use.
    <p>This does NOT make a copy of the mantissa array.
    </sgml>
    Arg1 is the BigDecimal to clone (non-null)
    */

 //--private static final com.ibm.icu.math.BigDecimal clone(com.ibm.icu.math.BigDecimal dec){
 function clone(dec) {
  //--com.ibm.icu.math.BigDecimal copy;
  var copy;
  copy=new BigDecimal();
  copy.ind=dec.ind;
  copy.exp=dec.exp;
  copy.form=dec.form;
  copy.mant=dec.mant;
  return copy;
  }

 /* <sgml> Check one or two numbers for lost digits. </sgml>
    Arg1 is RHS (or null, if none)
    Arg2 is current DIGITS setting
    returns quietly or throws an exception */

 //--private void checkdigits(com.ibm.icu.math.BigDecimal rhs,int dig){
 function checkdigits(rhs, dig) {
  if (dig==0)
   return; // don't check if digits=0
  // first check lhs...
  if (this.mant.length>dig)
   if ((!(this.allzero(this.mant,dig))))
    throw "Too many digits: "+this.toString();
  if (rhs==null)
   return; // monadic
  if (rhs.mant.length>dig)
   if ((!(this.allzero(rhs.mant,dig))))
    throw "Too many digits: "+rhs.toString();
  return;
  }

 /* <sgml> Round to specified digits, if necessary. </sgml>
    Arg1 is requested MathContext [with length and rounding mode]
    returns this, for convenience */

 //--private com.ibm.icu.math.BigDecimal round(com.ibm.icu.math.MathContext set){
 //-- return round(set.digits,set.roundingMode);
 //-- }

 /* <sgml> Round to specified digits, if necessary.
    Arg1 is requested length (digits to round to)
            [may be <=0 when called from format, dodivide, etc.]
    Arg2 is rounding mode
    returns this, for convenience

    ind and exp are adjusted, but not cleared for a mantissa of zero

    The length of the mantissa returned will be Arg1, except when Arg1
    is 0, in which case the returned mantissa length will be 1.
    </sgml>
    */

 //private com.ibm.icu.math.BigDecimal round(int len,int mode){
 function round() {
  var len;
  var mode;
  if (round.arguments.length == 2)
   {
    len = round.arguments[0];
    mode = round.arguments[1];
   }
  else if (round.arguments.length == 1)
   {
    var set = round.arguments[0];
    len = set.digits;
    mode = set.roundingMode;
   }
  else
   {
    throw "round(): " + round.arguments.length + " arguments given; expected 1 or 2";
   }
  //int adjust;
  var adjust;
  //int sign;
  var sign;
  //byte oldmant[];
  var oldmant;
  //boolean reuse=false;
  var reuse=false;
  //--byte first=0;
  var first=0;
  //--int increment;
  var increment;
  //--byte newmant[]=null;
  var newmant=null;
  adjust=this.mant.length-len;
  if (adjust<=0)
   return this; // nowt to do

  this.exp=this.exp+adjust; // exponent of result
  sign=this.ind; // save [assumes -1, 0, 1]
  oldmant=this.mant; // save
  if (len>0)
   {
    // remove the unwanted digits
    this.mant=new Array(len);
    //--java.lang.System.arraycopy((java.lang.Object)oldmant,0,(java.lang.Object)mant,0,len);
    this.arraycopy(oldmant,0,this.mant,0,len);
    reuse=true; // can reuse mantissa
    first=oldmant[len]; // first of discarded digits
   }
  else
   {/* len<=0 */
    this.mant=this.ZERO.mant;
    this.ind=this.iszero;
    reuse=false; // cannot reuse mantissa
    if (len==0)
     first=oldmant[0];
    else
     first=0; // [virtual digit]
   }

  // decide rounding adjustment depending on mode, sign, and discarded digits
  increment=0; // bumper
  {modes:do{/*select*/
  if (mode==this.ROUND_HALF_UP)
   { // default first [most common]
    if (first>=5)
     increment=sign;
   }
  else if (mode==this.ROUND_UNNECESSARY)
   { // default for setScale()
    // discarding any non-zero digits is an error
    if ((!(this.allzero(oldmant,len))))
     throw "round(): Rounding necessary";
   }
  else if (mode==this.ROUND_HALF_DOWN)
   { // 0.5000 goes down
    if (first>5)
     increment=sign;
    else
     if (first==5)
      if ((!(this.allzero(oldmant,len+1))))
       increment=sign;
   }
  else if (mode==this.ROUND_HALF_EVEN)
   { // 0.5000 goes down if left digit even
    if (first>5)
     increment=sign;
    else
     if (first==5)
      {
       if ((!(this.allzero(oldmant,len+1))))
        increment=sign;
       else /* 0.5000 */
        if ((((this.mant[this.mant.length-1])%2))==1)
         increment=sign;
      }
   }
  else if (mode==this.ROUND_DOWN)
   {} // never increment
  else if (mode==this.ROUND_UP)
   { // increment if discarded non-zero
    if ((!(this.allzero(oldmant,len))))
     increment=sign;
   }
  else if (mode==this.ROUND_CEILING)
   { // more positive
    if (sign>0)
     if ((!(this.allzero(oldmant,len))))
      increment=sign;
   }
  else if (mode==this.ROUND_FLOOR)
   { // more negative
    if (sign<0)
     if ((!(this.allzero(oldmant,len))))
      increment=sign;
   }
  else{
   throw "round(): Bad round value: "+mode;
  }
  }while(false);}/*modes*/

  if (increment!=0)
   {bump:do{
    if (this.ind==this.iszero)
     {
      // we must not subtract from 0, but result is trivial anyway
      this.mant=this.ONE.mant;
      this.ind=increment;
     }
    else
     {
      // mantissa is non-0; we can safely add or subtract 1
      if (this.ind==this.isneg)
       increment=-increment;
      newmant=this.byteaddsub(this.mant,this.mant.length,this.ONE.mant,1,increment,reuse);
      if (newmant.length>this.mant.length)
       { // had a carry
        // drop rightmost digit and raise exponent
        this.exp++;
        // mant is already the correct length
        //java.lang.System.arraycopy((java.lang.Object)newmant,0,(java.lang.Object)mant,0,mant.length);
        this.arraycopy(newmant,0,this.mant,0,this.mant.length);
       }
      else
       this.mant=newmant;
     }
   }while(false);}/*bump*/
  // rounding can increase exponent significantly
  if (this.exp>this.MaxExp)
   throw "round(): Exponent Overflow: "+this.exp;
  return this;
  }

 /* <sgml> Test if rightmost digits are all 0.
    Arg1 is a mantissa array to test
    Arg2 is the offset of first digit to check
            [may be negative; if so, digits to left are 0's]
    returns 1 if all the digits starting at Arg2 are 0

    Arg2 may be beyond array bounds, in which case 1 is returned
    </sgml> */

 //--private static final boolean allzero(byte array[],int start){
 function allzero(array, start) {
  //--int i=0;
  var i=0;
  if (start<0)
   start=0;
  {var $25=array.length-1;i=start;i:for(;i<=$25;i++){
   if (array[i]!=0)
    return false;
   }
  }/*i*/
  return true;
  }

 /* <sgml> Carry out final checks and canonicalization
    <p>
    This finishes off the current number by:
      1. Rounding if necessary (NB: length includes leading zeros)
      2. Stripping trailing zeros (if requested and \PLAIN)
      3. Stripping leading zeros (always)
      4. Selecting exponential notation (if required)
      5. Converting a zero result to just '0' (if \PLAIN)
    In practice, these operations overlap and share code.
    It always sets form.
    </sgml>
    Arg1 is requested MathContext (length to round to, trigger, and FORM)
    Arg2 is 1 if trailing insignificant zeros should be removed after
         round (for division, etc.), provided that set.form isn't PLAIN.
   returns this, for convenience
   */

 //--private com.ibm.icu.math.BigDecimal finish(com.ibm.icu.math.MathContext set,boolean strip){
 function finish(set, strip) {
  //--int d=0;
  var d=0;
  //--int i=0;
  var i=0;
  //--byte newmant[]=null;
  var newmant=null;
  //--int mag=0;
  var mag=0;
  //--int sig=0;
  var sig=0;
  /* Round if mantissa too long and digits requested */
  if (set.digits!=0)
   if (this.mant.length>set.digits)
    this.round(set);

  /* If strip requested (and standard formatting), remove
     insignificant trailing zeros. */
  if (strip)
   if (set.form!=MathContext.prototype.PLAIN)
    {
     d=this.mant.length;
     /* see if we need to drop any trailing zeros */
     {i=d-1;i:for(;i>=1;i--){
      if (this.mant[i]!=0)
       break i;
      d--;
      this.exp++;
      }
     }/*i*/
     if (d<this.mant.length)
      {/* need to reduce */
       newmant=new Array(d);
       //--java.lang.System.arraycopy((java.lang.Object)this.mant,0,(java.lang.Object)newmant,0,d);
       this.arraycopy(this.mant,0,newmant,0,d);
       this.mant=newmant;
      }
    }

  this.form=MathContext.prototype.PLAIN; // preset

  /* Now check for leading- and all- zeros in mantissa */
  {var $26=this.mant.length;i=0;i:for(;$26>0;$26--,i++){
   if (this.mant[i]!=0)
    {
     // non-0 result; ind will be correct
     // remove leading zeros [e.g., after subtract]
     if (i>0)
      {delead:do{
       newmant=new Array(this.mant.length-i);
       //--java.lang.System.arraycopy((java.lang.Object)this.mant,i,(java.lang.Object)newmant,0,this.mant.length-i);
       this.arraycopy(this.mant,i,newmant,0,this.mant.length-i);
       this.mant=newmant;
      }while(false);}/*delead*/
     // now determine form if not PLAIN
     mag=this.exp+this.mant.length;
     if (mag>0)
      { // most common path
       if (mag>set.digits)
        if (set.digits!=0)
         this.form=set.form;
       if ((mag-1)<=this.MaxExp)
        return this; // no overflow; quick return
      }
     else
      if (mag<(-5))
       this.form=set.form;
     /* check for overflow */
     mag--;
     if ((mag<this.MinExp)||(mag>this.MaxExp))
      {overflow:do{
       // possible reprieve if form is engineering
       if (this.form==MathContext.prototype.ENGINEERING)
        {
         sig=mag%3; // leftover
         if (sig<0)
          sig=3+sig; // negative exponent
         mag=mag-sig; // exponent to use
         // 1999.06.29: second test here must be MaxExp
         if (mag>=this.MinExp)
          if (mag<=this.MaxExp)
           break overflow;
        }
       throw "finish(): Exponent Overflow: "+mag;
      }while(false);}/*overflow*/
     return this;
    }
   }
  }/*i*/

  // Drop through to here only if mantissa is all zeros
  this.ind=this.iszero;
  {/*select*/
  if (set.form!=MathContext.prototype.PLAIN)
   this.exp=0; // standard result; go to '0'
  else if (this.exp>0)
   this.exp=0; // +ve exponent also goes to '0'
  else{
   // a plain number with -ve exponent; preserve and check exponent
   if (this.exp<this.MinExp)
    throw "finish(): Exponent Overflow: "+this.exp;
  }
  }
  this.mant=this.ZERO.mant; // canonical mantissa
  return this;
  }

 function isGreaterThan(other) {
  return this.compareTo(other) > 0;
 };
 function isLessThan(other) {
  return this.compareTo(other) < 0;
 };
 function isGreaterThanOrEqualTo(other) {
  return this.compareTo(other) >= 0;
 };
 function isLessThanOrEqualTo(other) {
  return this.compareTo(other) <= 0;
 };
 function isPositive() {
  return this.compareTo(BigDecimal.prototype.ZERO) > 0;
 };
 function isNegative() {
  return this.compareTo(BigDecimal.prototype.ZERO) < 0;
 };
 function isZero() {
  return this.compareTo(BigDecimal.prototype.ZERO) === 0;
 };
return BigDecimal;
})(MathContext); // BigDecimal depends on MathContext

if (typeof define === "function" && define.amd != null) {
	// AMD-loader compatible resource declaration
	// require('bigdecimal') will return JS Object:
	// {'BigDecimal':BigDecimalPointer, 'MathContext':MathContextPointer}
	define({'BigDecimal':BigDecimal, 'MathContext':MathContext});
} else if (typeof this === "object"){
	// global-polluting outcome.
	this.BigDecimal = BigDecimal;
	this.MathContext = MathContext;
}

}).call(this); // in browser 'this' will be 'window' or simulated window object in AMD-loading scenarios.

function isRealNum(val){
    // isNaN()函数 把空串 空格 以及NUll 按照0来处理 所以先去除
    if(val === "" || val ==null){
        return false;
    }
    if(!isNaN(val)){
        return true;
    }else{
        return false;
    }
} 

//数字转换千分位
function changeToThousandsForsl(num){
    var num = (num || 0).toString(), result = '';
    while (num.length > 3) {
        result = ',' + num.slice(-3) + result;
        num = num.slice(0, num.length - 3);
    }
    if (num) { result = num + result; }
    return result;
}

//千分位转数字
function changeToNormalFormatForsl(num){
	num=num.replace(/,/gi,'');
	return num;
}